Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36501830

RESUMO

In the blockchain system, mining pools are popular for miners to work collectively and obtain more revenue. Nowadays, there are consensus attacks that threaten the efficiency and security of mining pools. As a new type of consensus attack, the Fork After Withholding (FAW) attack can cause huge economic losses to mining pools. Currently, there are a few evaluation tools for FAW attacks, but it is still difficult to evaluate the FAW attack protection capability of target mining pools. To address the above problem, this paper proposes a novel evaluation framework for FAW attack protection of the target mining pools in blockchain systems. In this framework, we establish the revenue model for mining pools, including honest consensus revenue, block withholding revenue, successful fork revenue, and consensus cost. We also establish the revenue functions of target mining pools and other mining pools, respectively. In particular, we propose an efficient computing power allocation optimization algorithm (CPAOA) for FAW attacks against multiple target mining pools. We propose a model-solving algorithm based on improved Aquila optimization by improving the selection mechanism in different optimization stages, which can increase the convergence speed of the model solution and help find the optimal solution in computing power allocation. Furthermore, to greatly reduce the possibility of falling into local optimal solutions, we propose a solution update mechanism that combines the idea of scout bees in an artificial bee colony optimization algorithm and the constraint of allocating computing power. The experimental results show that the framework can effectively evaluate the revenue of various mining pools. CPAOA can quickly and accurately allocate the computing power of FAW attacks according to the computing power of the target mining pool. Thus, the proposed evaluation framework can effectively help evaluate the FAW attack protection capability of multiple target mining pools and ensure the security of the blockchain system.


Assuntos
Blockchain , Utensílios Domésticos , Algoritmos , Consenso
2.
Sensors (Basel) ; 22(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35808527

RESUMO

Blockchain has become one of the key techniques for the security of the industrial internet. However, the blockchain is vulnerable to FAW (Fork after Withholding) attacks. To protect the industrial internet from FAW attacks, this paper proposes a novel FAW attack protection algorithm (FAWPA) based on the behavior of blockchain miners. Firstly, FAWPA performs miner data preprocessing based on the behavior of the miners. Then, FAWPA proposes a behavioral reward and punishment mechanism and a credit scoring model to obtain cumulative credit value with the processed data. Moreover, we propose a miner's credit classification mechanism based on fuzzy C-means (FCM), which combines the improved Aquila optimizer (AO) with strong solving ability. That is, FAWPA combines the miner's accumulated credit value and multiple attack features as the basis for classification, and optimizes cluster center selection by simulating Aquila's predation behavior. It can improve the solution update mechanism in different optimization stages. FAWPA can realize the rapid classification of miners' credit levels by improving the speed of identifying malicious miners. To evaluate the protective effect of the target mining pool, FAWPA finally establishes a mining pool and miner revenue model under FAW attack. The simulation results show that FAWPA can thoroughly and efficiently detect malicious miners in the target mining pool. FAWPA also improves the recall rate and precision rate of malicious miner detection, and it improves the cumulative revenue of the target mining pool. The proposed algorithm performs better than ND, RSCM, AWRS, and ICRDS.


Assuntos
Blockchain , Mineradores , Algoritmos , Humanos , Mineração
3.
Appl Intell (Dordr) ; 52(13): 14693-14710, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36199853

RESUMO

In clinical medicine, magnetic resonance imaging (MRI) is one of the most important tools for diagnosis, triage, prognosis, and treatment planning. However, MRI suffers from an inherent slow data acquisition process because data is collected sequentially in k-space. In recent years, most MRI reconstruction methods proposed in the literature focus on holistic image reconstruction rather than enhancing the edge information. This work steps aside this general trend by elaborating on the enhancement of edge information. Specifically, we introduce a novel parallel imaging coupled dual discriminator generative adversarial network (PIDD-GAN) for fast multi-channel MRI reconstruction by incorporating multi-view information. The dual discriminator design aims to improve the edge information in MRI reconstruction. One discriminator is used for holistic image reconstruction, whereas the other one is responsible for enhancing edge information. An improved U-Net with local and global residual learning is proposed for the generator. Frequency channel attention blocks (FCA Blocks) are embedded in the generator for incorporating attention mechanisms. Content loss is introduced to train the generator for better reconstruction quality. We performed comprehensive experiments on Calgary-Campinas public brain MR dataset and compared our method with state-of-the-art MRI reconstruction methods. Ablation studies of residual learning were conducted on the MICCAI13 dataset to validate the proposed modules. Results show that our PIDD-GAN provides high-quality reconstructed MR images, with well-preserved edge information. The time of single-image reconstruction is below 5ms, which meets the demand of faster processing.

4.
Comput Intell Neurosci ; 2021: 6168562, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539771

RESUMO

With the gradual improvement of people's living standards, the production and drinking of all kinds of food is increasing. People's disease rate has increased compared with before, which leads to the increasing number of medical image processing. Traditional technology cannot meet most of the needs of medicine. At present, convolutional neural network (CNN) algorithm using chaotic recursive diagonal model has great advantages in medical image processing and has become an indispensable part of most hospitals. This paper briefly introduces the use of medical science and technology in recent years. The hybrid algorithm of CNN in chaotic recursive diagonal model is mainly used for technical research, and the application of this technology in medical image processing is analysed. The CNN algorithm is optimized by using chaotic recursive diagonal model. The results show that the chaotic recursive diagonal model can improve the structure of traditional neural network and improve the efficiency and accuracy of the original CNN algorithm. Then, the application research and comparison of medical image processing are performed according to CNN algorithm and optimized CNN algorithm. The experimental results show that the CNN algorithm optimized by chaotic recursive diagonal model can help medical image automatic processing and patient condition analysis.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Algoritmos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA