Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Environ Sci Technol ; 56(4): 2466-2475, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35099937

RESUMO

Benzotriazole ultraviolet stabilizers (BUVSs) are ubiquitous emerging pollutants that have been reported to show estrogenic disruption effects through interaction with the classic estrogen receptors (ERs) in the fashion of low activity. The present study aims at revealing the potential disruption mechanism via estrogen-related receptors α and γ (ERRα and ERRγ) pathways. By the competitive binding assay, we first found that BUVSs bond to ERRγ ligand binding domain (ERRγ-LBD) with Kd ranging from 0.66 to 19.27 µM. According to the results of reporter gene assays, the transcriptional activities of ERRα and ERRγ were promoted by most tested BUVSs with the lowest observed effective concentrations (LOEC) from 10 to 100 nM, which are in the range of human exposure levels. At 1 µM, most tested BUVSs showed higher agonistic activity toward ERRγ than ERRα. The most effective two BUVSs promoted the MCF-7 proliferation dependent on ERRα and ERRγ with a LOEC of 100 nM. The molecular dynamics simulation showed that most studied BUVSs had lower binding free energy with ERRγ than with ERRα. The structure-activity relationship analysis revealed that molecular polarizability, electron-donating ability, ionization potential, and softness were the main structural factors impacting the binding of BUVSs with ERRγ. Overall, our results provide novel insights into the estrogenic disruption effects of BUVSs.


Assuntos
Neoplasias da Mama , Receptores de Estrogênio , Proliferação de Células , Estrogênios , Feminino , Humanos , Receptores de Estrogênio/metabolismo , Triazóis , Receptor ERRalfa Relacionado ao Estrogênio
2.
Zhongguo Yi Liao Qi Xie Za Zhi ; 46(3): 265-268, 2022 May 30.
Artigo em Chinês | MEDLINE | ID: mdl-35678433

RESUMO

With the deepening of China's medical reform, the scale of hospital equipment assets at all levels is also expanding. In the face of large-scale and various equipment assets, the traditional single machine statistical management method not only has a single interface, poor data accuracy and is not compatible with other systems, but also is difficult to achieve "full life cycle" management. In order to solve above problems, the Ninth People's Hospital Affiliated to Shanghai Jiao Tong University of Medicine aims to use the Internet of Things to build a medical equipment management information platform, realize the whole hospital area, whole subject and whole process management of medical materials, and achieve the objectives of business linkage, information connectivity and data sharing between management departments and clinical departments.


Assuntos
Equipamentos e Provisões Hospitalares , Gestão da Informação , China , Hospitais , Humanos , Disseminação de Informação
3.
Environ Sci Technol ; 54(6): 3428-3436, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32092270

RESUMO

The potential causal relationship between exposure to environmental contaminants and diabetes is troubling. Exposure of perfluoroalkyl substances (PFASs) is found to be associated with hyperinsulinemia and the enhancement of insulin secretion by islet ß cells in humans, but the underlying mechanism is still unclear. Here, by combining in vivo studies with both wild type and gene knockout mice and in vitro studies with mouse islet ß cells (ß-TC-6), we demonstrated clearly that 1 h exposure of perfluorooctanesulfonate (PFOS) stimulated insulin secretion and intracellular calcium level by activating G protein-coupled receptor 40 (GPR40), a vital free fatty acid regulated membrane receptor on islet ß cells. We further showed that the observed effects of PFASs on the mouse model may also exist in humans by investigating the molecular binding interaction of PFASs with human GPR40. We thus provided evidence for a novel mechanism for how insulin-secretion is disrupted by PFASs in humans.


Assuntos
Fluorocarbonos , Células Secretoras de Insulina , Ilhotas Pancreáticas , Animais , Humanos , Insulina , Secreção de Insulina , Camundongos , Receptores Acoplados a Proteínas G
4.
J Mol Cell Cardiol ; 130: 170-183, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30998977

RESUMO

Hyperglycemia-induced apoptosis plays a critical role in the pathogenesis of diabetic cardiomyopathy (DCM). Our previous study demonstrated that ivabradine, a selective If current antagonist, significantly attenuated myocardial apoptosis in diabetic mice, but the underlying mechanisms remained unknown. This study investigated the underlying mechanisms by which ivabradine exerts anti-apoptotic effects in experimental DCM. Pretreatment with ivabradine, but not ZD7288 (an established If current blocker), profoundly inhibited high glucose-induced apoptosis via inactivation of nuclear factor (NF)-κB signaling in neonatal rat cardiomyocytes. The effect was abolished by transfection of an siRNA targeting protein phosphatase 2A catalytic subunit (PP2Ac). In streptozotocin-induced diabetic mice, ivabradine treatment significantly inhibited left ventricular hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) and HCN4 (major components of the If current), activated PP2Ac, and attenuated NF-κB signaling activation and apoptosis, in line with improved histological abnormalities, fibrosis, and cardiac dysfunction without affecting hyperglycemia. These effects were not observed in diabetic mice with virus-mediated knockdown of HCN2 or HCN4 after myocardial injection, but were alleviated by knockdown of PP2Acα. Molecular docking and phosphatase activity assay confirmed direct binding of ivabradine to, and activation of, PP2Ac. In conclusion, ivabradine may directly activate PP2Ac, leading to inhibition of NF-κB signaling activation, myocardial apoptosis, and fibrosis, and eventually improving cardiac function in experimental DCM. Taken together, the present findings suggest that ivabradine may be a promising drug for treatment of DCM.


Assuntos
Diabetes Mellitus Experimental/enzimologia , Cardiomiopatias Diabéticas/enzimologia , Ivabradina/farmacologia , Miócitos Cardíacos/enzimologia , Proteína Fosfatase 2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/patologia , Ativação Enzimática/efeitos dos fármacos , Masculino , Camundongos , Simulação de Acoplamento Molecular , Miócitos Cardíacos/patologia , NF-kappa B/metabolismo , Proteína Fosfatase 2/química , Ratos
5.
Environ Sci Technol ; 53(6): 3287-3295, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30785727

RESUMO

Hexafluoropropylene oxide trimer acid (HFPO-TA) and hexafluoropropylene oxide dimer acid (HFPO-DA) have been used as perfluorooctanoic acid (PFOA) alternatives in the fluoropolymer industry for years. Their widespread environmental distribution, high bioaccumulation capability, and human exposure have caused great concern. Nevertheless, their potential toxicity and health risk remain largely unknown. In the present study, we compared potential disruption effects of HFPO-TA, HFPO-DA, and PFOA on peroxisome proliferator-activated receptor γ (PPARγ) via the investigation of receptor binding, receptor activity, and cell adipogenesis effects. The receptor binding experiment showed HFPO-TA exhibited 4.8-7.5 folds higher binding affinity with PPARγ than PFOA, whereas HFPO-DA exhibited weaker binding affinity than PFOA. They also showed agonistic activity toward PPARγ signaling pathway in HEK 293 cells in the order of HFPO-TA > PFOA > HFPO-DA. Molecular docking simulation indicated HFPO-TA formed more hydrogen bonds than PFOA, whereas HFPO-DA formed fewer hydrogen bonds than PFOA. HFPO-TA promoted adipogenic differentiation and lipid accumulation in both mouse and human preadipocytes with potency higher than PFOA. Adipogenesis in human preadipocytes is a more sensitive end point than mouse preadipocytes. Collectively, HFPO-TA exerts higher binding affinity, agonistic activity, and adipogenesis activity than PFOA. The potential health risk of HFPO-TA should be of concern.


Assuntos
Adipogenia , PPAR gama , Animais , Caprilatos , Fluorocarbonos , Células HEK293 , Humanos , Camundongos , Simulação de Acoplamento Molecular , Óxidos
6.
Environ Sci Technol ; 53(14): 8371-8380, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31251593

RESUMO

As alternatives to perfluorooctanoic acid (PFOA), hexafluoropropylene oxide (HFPO) homologues, including hexafluoropropylene oxide dimer acid (HFPO-DA), hexafluoropropylene oxide trimer acid (HFPO-TA), and hexafluoropropylene oxide tetramer acid (HFPO-TeA), have been used in the fluoropolymer industry for a long period of time. These compounds have attracted widespread attention in recent years due to their environmental ubiquity and high bioaccumulation capability, as well as their toxicity. In our study, we evaluated the potential estrogenic effects of HFPOs in comparison to PFOA by ligand binding, transcriptional activity, and in vivo assays. Fluorescence ligand binding assays showed that both HFPO-TA and HFPO-TeA exhibited higher binding affinity to estrogen receptor ligand binding domains (ER-LBDs) than PFOA, with 2.5- and 57.5-fold higher affinity to ERα-LBD and 2.6- and 41.8-fold higher affinity to ERß-LBD, respectively, whereas HFPO-DA exhibited weaker binding affinity than PFOA. Unlike PFOA, HFPO-TA and HFPO-TeA exhibited antagonistic activity toward the ERs' signaling pathway, with HFPO-TeA displaying the strongest potency. In silico study revealed that while PFOA binds with ERs in a similar fashion as 17ß-estradiol, the HFPOs display an antagonistic binding mode. Using a zebrafish model, we further found that exposure to HFPO homologues significantly altered the levels of sex steroid hormones and vitellogenin. In general, both in vivo and in vitro results indicate that HFPO homologues might exert higher estrogenic effects than PFOA.


Assuntos
Estrogênios , Óxidos , Receptor alfa de Estrogênio , Receptor beta de Estrogênio , Transdução de Sinais
7.
Ecotoxicol Environ Saf ; 180: 686-692, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31146155

RESUMO

There has been long-standing evidence that the lower-chlorinated polychlorinated biphenyls (LC-PCBs) can be metabolized to hydroxylated metabolites (OH-PCBs), which play important roles in the LC-PCBs induced toxicity. Recently, multiple studies have demonstrated the further metabolic transformation of OH-PCBs to LC-PCB sulfates in vitro and in vivo. Several studies found LC-PCB sulfates could bind with thyroid hormone (TH) transport proteins in the serum, indicating the potential relevance of these metabolites in the TH system disruption effects. However, the interaction of LC-PCB sulfates with the TH nuclear receptor (TR), another kind of important functional protein in the TH system, has not been explored. Here, by using a fluorescence competitive binding assay, we demonstrated that LC-PCB sulfates could bind with TRα. Moreover, the LC-PCB sulfates had higher binding potency than their corresponding OH-PCB precursors. By using a luciferase reporter gene assay, we found the LC-PCB sulfates showed agonistic activity towards the TRα signaling pathway. Molecular docking simulation showed all the tested LC-PCB sulfates could fit into the ligand binding pocket of the TRα. The LC-PCB sulfates formed hydrogen bond interaction with arginine 228 residue of TRα by their sulfate groups, which might facilitate the TR binding and agonistic activity. The present study suggests that interaction with the TR might be another possible mechanism by which LC-PCB sulfate induce TH system disruption effects.


Assuntos
Disruptores Endócrinos/metabolismo , Bifenilos Policlorados/metabolismo , Sulfatos/metabolismo , Receptores alfa dos Hormônios Tireóideos/metabolismo , Sítios de Ligação , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Transdução de Sinais , Receptores alfa dos Hormônios Tireóideos/química
8.
Zhonghua Nan Ke Xue ; 25(6): 544-548, 2019 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-32223091

RESUMO

OBJECTIVE: To investigate the clinical features, pathogenesis, diagnosis and scrotal reconstruction in the treatment of idiopathic scrotal calcinosis (ISC). METHODS: From March 2007 to October 2018, 10 ISC patients, aged 28-79 (mean 45) years and with a disease course of 6-497 (mean 128.4) months, were treated in our hospital. We retrospectively analyzed their clinical data and reviewed related literature. RESULTS: All the patients underwent physical examination and biochemical and parathyroid function tests. None of them had a history of endocrine or metabolic disease, or trauma, or a family member with similar diseases, and none had subjective symptoms except local pruritus in 1 case. All were treated surgically and post-operative follow-up revealed no recurrence. Histopathological examination of the excised lesion confirmed it to be ISC. CONCLUSIONS: ISC is a rare localized benign disease, of which surgery seems an effective option for the definite diagnosis and treatment. Occasionally scrotal reconstruction may be required in case of extensive involvement of the scrotal skin.


Assuntos
Calcinose/diagnóstico , Doenças dos Genitais Masculinos/diagnóstico , Escroto/patologia , Adulto , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva , Estudos Retrospectivos
9.
J Cell Physiol ; 233(12): 9786-9798, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30078216

RESUMO

BACKGROUND: Previous studies have suggested that exogenous hydrogen sulfide can alleviate the development of diabetic cardiomyopathy (DCM) by inhibiting oxidative stress, inflammation, and apoptosis. However, the underlying mechanism is not fully understood. Nuclear expression and function of the transcription factor Forkhead box protein O (FoxO1) have been associated with cardiovascular diseases, and thus, the importance of FoxO1 in DCM has gained increasing attention. This study was designed to investigate the interactions between hydrogen sulfide (H2 S) and nuclear FoxO1 in DCM. METHODS: Diabetes was induced in adult male C57BL/6J mice by intraperitoneal injection of streptozotocin and was treated with H2 S donor sodium hydrosulfide for 12 weeks. The H9C2 cardiomyoblast cell line and neonatal rat cardiomyocytes (NRCMs) were treated with the slow-releasing H2 S donor GYY4137 before high-glucose (HG) exposure with or without pretreatment with the Akt inhibitor MK-2206 2HCl. Changes in FoxO1 protein phosphorylation and subcellular localization were determined in H9C2 cells, NRCMs, and cardiac tissues from normal and diabetic mice. Cardiac structure and function in the diabetic mice were evaluated by echocardiography and histological analysis and compared with those in control animals. RESULTS: The echocardiographic and histopathological data indicated that exogenous H2 S improved cardiac function and attenuated cardiac hypertrophy and myocardial fibrosis in diabetic mice. H2 S also improved HG-induced oxidative stress and apoptosis in cardiac tissue and NRCMs. In addition, H2 S induced FoxO1 phosphorylation and nuclear exclusion in vitro and in vivo, and this function was not inhibited by MK-2206 2HCl. Alanine substitution mutation of three sites in FoxO1-enhanced FoxO1 transcriptional activity, and subsequent treatment with exogenous H2 S could not prevent HG-induced nuclear retention. CONCLUSIONS: Our data indicate that H2 S is a novel regulator of FoxO1 in cardiac cells and provide evidence supporting the potential of H2 S in inhibiting the progression of DCM.


Assuntos
Cardiomiopatias Diabéticas/tratamento farmacológico , Proteína Forkhead Box O1/genética , Sulfeto de Hidrogênio/administração & dosagem , Inflamação/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Coração/efeitos dos fármacos , Coração/fisiopatologia , Humanos , Inflamação/genética , Inflamação/fisiopatologia , Camundongos , Camundongos Endogâmicos NOD , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Transdução de Sinais
10.
Environ Sci Technol ; 52(16): 9412-9418, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30052437

RESUMO

Chlorinated polyfluoroalkylether sulfonates (Cl-PFAESs) have been used as perfluorooctanesulfonate (PFOS) alternatives in the chrome plating industry for years. Although Cl-PFAESs have become ubiquitous environmental contaminants, knowledge on their toxicological mechanism remains very limited. We compared potential thyroid hormone (TH) disruption effects of Cl-PFAESs and PFOS via the mechanisms of competitive binding to TH transport proteins and activation of TH receptors (TRs). Fluorescence binding assays revealed that 6:2 Cl-PFAES, 8:2 Cl-PFAES and F-53B (a mixture of 6:2 and 8:2 Cl-PFAES) all interacted with a TH transport protein transthyretin (TTR), with 6:2 Cl-PFAES showing the highest affinity. It was also found that the chemicals interacted with TRs, with the affinity following the order of 6:2 Cl-PFAES > PFOS > 8:2 Cl-PFAES. In reporter gene assays the chemicals exhibited agonistic activity toward TRs, with the potency of 6:2 Cl-PFAES comparable to that of PFOS. The chemicals also promoted GH3 cell proliferation, with 6:2 Cl-PFAES displaying the highest potency. Molecular docking and molecular dynamic simulation revealed that both Cl-PFAESs fit into the ligand binding pockets of TTR and TRs with the binding modes similar to PFOS. Collectively, our results demonstrate that Cl-PFAESs might cause TH disruption effects through competitive binding to transport proteins and activation of TRs.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Simulação de Acoplamento Molecular , Receptores dos Hormônios Tireóideos , Hormônios Tireóideos
11.
Environ Sci Technol ; 52(15): 8894-8902, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30005570

RESUMO

Estrogen-related receptor γ (ERRγ) is an orphan nuclear receptor having functional cross-talk with classical estrogen receptors. Here, we investigated whether ERRγ is a potential target of polybrominated diphenyl ethers (PBDEs) and their hydroxylated metabolites (OH-PBDEs). By using a fluorescence competitive binding method established in our laboratory, the binding potencies of 30 PBDEs/OH-PBDEs with ERRγ were determined for the first time. All of the tested OH-PBDEs and some PBDEs bound to ERRγ with Kd values ranging from 0.13-13.61 µM. The OH-PBDEs showed much higher binding potency than their parent PBDEs. A quantitative structure-activity relationship (QSAR) model was developed to analyze the chemical binding potencies in relation to their structural and chemical characteristics. The QSAR model indicated that the molecular size, relative ratios of aromatic atoms, and hydrogen bond donors and acceptors were crucial factors for PBDEs/OH-PBDEs binding. By using a reporter gene assay, we found that most of the low-brominated PBDEs/OH-PBDEs exerted agonistic activity toward ERRγ, while high-brominated PBDEs/OH-PBDEs had no effect on the basal ERRγ activity. The docking results showed that the low-brominated PBDEs/OH-PBDEs tended to take an agonistic binding mode while the high-brominated ones tended to take an antagonistic binding mode. Overall, our results suggest ERRγ to be a potential novel target for PBDEs/OH-PBDEs.


Assuntos
Éteres Difenil Halogenados , Receptores de Estrogênio , Estrogênios , Genes Reporter , Hidroxilação
12.
Environ Sci Technol ; 52(5): 3232-3239, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29389105

RESUMO

Chlorinated polyfluorinated ether sulfonates (Cl-PFAESs) are the alternative products of perfluorooctanesulfonate (PFOS) in the metal plating industry in China. The similarity in chemical structures between Cl-PFAESs and PFOS makes it reasonable to assume they possess similar biological activities. In the present study, we investigated whether Cl-PFAESs could induce cellular effects through peroxisome proliferator-activated receptors (PPARs) signaling pathways like PFOS. By using fluorescence competitive binding assay, we found two dominant Cl-PFAESs (6:2 Cl-PFAES and 8:2 Cl-PFAES) bound to PPARs with affinity higher than PFOS. Based on the luciferase reporter gene transcription assay, the two Cl-PFAESs also showed agonistic activity toward PPARs signaling pathways with potency similar to (6:2 Cl-PFAES) or higher than (8:2 Cl-PFAES) PFOS. Molecular docking simulation showed the two Cl-PFAESs fitted into the ligand binding pockets of PPARs with very similar binding mode as PFOS. The cell function results showed Cl-PFAESs promoted the process of adipogenesis in 3T3-L1 cells with potency higher than PFOS. Taken together, we found for the first time that Cl-PFAESs have the ability to interfere with PPARs signaling pathways, and current exposure level of 6:2 Cl-PFAES in occupational workers has exceeded the margin of safety. Our study highlights the potential health risks of Cl-PFAESs as PFOS alternatives.


Assuntos
Éter , Receptores Ativados por Proliferador de Peroxissomo , Ácidos Alcanossulfônicos , Animais , China , Éteres , Fluorocarbonos , Humanos , Camundongos , Simulação de Acoplamento Molecular , Transdução de Sinais
13.
Environ Sci Technol ; 51(19): 11423-11430, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28858478

RESUMO

Numerous studies have indicated estrogenic disruption effects of bisphenol A (BPA) analogues. Previous mechanistic studies were mainly focused on their genomic activities on nuclear estrogen receptor pathway. However, their nongenomic effects through G protein-coupled estrogen receptor (GPER) pathway remain poorly understood. Here, using a SKBR3 cell-based fluorescence competitive binding assay, we found six BPA analogues bound to GPER directly, with bisphenol AF (BPAF) and bisphenol B (BPB) displaying much higher (∼9-fold) binding affinity than BPA. Molecular docking also demonstrated the binding of these BPA analogues to GPER. By measuring calcium mobilization and cAMP production in SKBR3 cells, we found the binding of these BPA analogues to GPER lead to the activation of subsequent signaling pathways. Consistent with the binding results, BPAF and BPB presented higher agonistic activity than BPA with the lowest effective concentration (LOEC) of 10 nM. Moreover, based on the results of Boyden chamber and wound-healing assays, BPAF and BPB displayed higher activity in promoting GPER mediated SKBR3 cell migration than BPA with the LOEC of 100 nM. Overall, we found two BPA analogues BPAF and BPB could exert higher estrogenic effects than BPA via GPER pathway at nanomolar concentrations.


Assuntos
Compostos Benzidrílicos/toxicidade , Simulação de Acoplamento Molecular , Fenóis/toxicidade , Receptores de Estrogênio/efeitos dos fármacos , Receptor alfa de Estrogênio , Estrogênios , Humanos
14.
Arch Toxicol ; 91(4): 1697-1707, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27572461

RESUMO

Perfluoroalkyl acids (PFAAs) are widespread environmental contaminants which have been detected in humans and linked to adverse health effects. Previous toxicological studies mostly focused on nuclear receptor-mediated pathways and did not support the observed toxic effects. In this study, we aimed to investigate the molecular mechanisms of PFAA toxicities by identifying their biological targets in cells. Using a novel electrochemical biosensor, 16 PFAAs were evaluated for inhibition of protein tyrosine phosphatase SHP-2 activity. Their potency increased with PFAA chain length, with perfluorooctadecanoic acid (PFODA) showing the strongest inhibition. Three selected PFAAs, 25 µM perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid, and PFODA, also inhibited SHP-2 activity in HepG2 cells and increased paxillin phosphorylation level. PFOA was detected in the immunoprecipitated SHP-2 from the cells exposed to 250 µM PFOA, providing unequivocal evidence for the direct binding of PFOA with SHP-2 in the cell. Molecular docking rationalized the formation of PFAA/SHP-2 complex and chain length-dependent inhibition potency. Our results have established SHP-2 as a new cellular target of PFAAs.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Caprilatos/toxicidade , Poluentes Ambientais/toxicidade , Fluorocarbonos/toxicidade , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Ácidos Alcanossulfônicos/química , Técnicas Biossensoriais , Caprilatos/química , Técnicas Eletroquímicas , Poluentes Ambientais/química , Fluorocarbonos/química , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Paxilina/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Relação Estrutura-Atividade
15.
Biochemistry ; 55(13): 1989-96, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26974599

RESUMO

Human G protein-coupled receptor 40 (hGPR40), with medium- and long-chain free fatty acids (FFAs) as its natural ligands, plays an important role in the enhancement of glucose-dependent insulin secretion. To date, information about the direct binding of FFAs to hGPR40 is very limited, and how carbon-chain length affects the activities of FFAs on hGPR40 is not yet understood. In this study, a fluorescein-fasiglifam analogue (F-TAK-875A) conjugate was designed and synthesized as a site-specific fluorescence probe to study the interaction of FFAs with hGPR40. hGPR40 was expressed in human embryonic kidney 293 cells and labeled with F-TAK-875A. By using flow cytometry, competitive binding of FFA and F-TAK-875A to hGPR40-expressed cells was measured. Binding affinities of 18 saturated FFAs, with carbon-chain lengths ranging from C6 to C23, were analyzed. The results showed that the binding potencies of FFAs to hGPR40 were dependent on carbon length. There was a positive correlation between length and binding potency for seven FFAs (C9-C15), with myristic acid (C15) showing the highest potency, 0.2% relative to TAK-875. For FFAs with a length of fewer than C9 or more than C15, they had very weak or no binding. Molecular docking results showed that the binding pocket of TAK-875 in hGPR40 could enclose FFAs with lengths of C15 or fewer. However, for FFAs with lengths longer than C15, part of the alkyl chain extended out of the binding pocket. This study provided insights into the structural dependence of FFAs binding to and activation of hGPR40.


Assuntos
Benzofuranos/metabolismo , Desenho de Fármacos , Ácidos Graxos não Esterificados/metabolismo , Fluoresceínas/metabolismo , Corantes Fluorescentes/metabolismo , Modelos Moleculares , Receptores Acoplados a Proteínas G/agonistas , Benzofuranos/síntese química , Benzofuranos/química , Sítios de Ligação , Ligação Competitiva , Ácidos Graxos não Esterificados/química , Citometria de Fluxo , Fluoresceína/química , Fluoresceína/metabolismo , Fluoresceínas/síntese química , Fluoresceínas/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Ligantes , Metilaminas/química , Metilaminas/metabolismo , Simulação de Acoplamento Molecular , Peso Molecular , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Propionatos/química , Propionatos/metabolismo , Conformação Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Sulfonas/química , Sulfonas/metabolismo
16.
Int J Mol Sci ; 17(3): 409, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-27011169

RESUMO

The biodegradation of carbon nanotubes (CNTs) may be one of major determinants of the toxic outcomes in exposed individuals. In this study, we employed a macrophage/monocyte model, Raw264.7, to investigate the feasibility of regulating the biodegradation of three types of single-walled carbon nanotubes (SWCNTs) (pristine, ox-, and OH-SWCNTs) by respiratory burst modulation. An artificial fluid mimicking the enzymatic reactions of respiratory burst was constituted to reveal the role of respiratory burst played in SWCNT biodegradation. The biodegradation of SWCNTs were characterized by Raman, ultraviolet-visible-near-infrared spectroscopy, and transmission electron microscopy. Our results showed significantly accelerated biodegradation of ox-SWCNTs and OH-SWCNTs in macrophages activated by phorbol myristate acetate (PMA), which could be prevented by N-acetyl-l-cysteine (NAC), whereas p-SWCNTs were resistant to biodegradation. Similar tendencies were observed by using the in vitro enzymatic system, and the degradation rates of these SWCNTs are in the order of OH-SWCNTs > ox-SWCNTs >> p-SWCNTs, suggesting a pivotal role of respiratory burst in accelerating the biodegradation of SWCNTs and that defect sites on SWCNTs might be a prerequisite for the biodegradation to occur. Our findings might provide invaluable clues on the development of intervention measurements for relieving the side effects of SWCNTs and would help to design safer SWCNT products with higher biodegradability and less toxicity.


Assuntos
Macrófagos/metabolismo , Nanotubos de Carbono , Explosão Respiratória , Animais , Antioxidantes/farmacologia , Linhagem Celular , Macrófagos/efeitos dos fármacos , Camundongos
17.
BMC Cardiovasc Disord ; 15: 153, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26577590

RESUMO

BACKGROUND: Intravascular ultrasound (IVUS) can be a useful tool during drug-eluting stents (DES) implantation as it allows accurate assessment of lesion severity and optimal treatment planning. However, numerous reports have shown that IVUS guided percutaneous coronary intervention is not associated with improved clinical outcomes, especially in non-complex patients and lesions. METHODS: We searched the literature in Medline, the Cochrane Library, and other internet sources to identify studies that compare clinical outcomes between IVUS-guided and angiography-guided DES implantation. Random-effects model was used to assess treatment effect. RESULTS: Twenty eligible studies with a total of 29,068 patients were included in this meta-analysis. The use of IVUS was associated with significant reductions in major adverse cardiovascular events (MACE, odds ratios [OR] 0.77, 95 % confidence intervals [CI] 0.71-0.83, P < 0.001), death (OR 0.62, 95 % CI 0.54-0.71, p < 0.001), and stent thrombosis (OR 0.59, 95 % CI: 0.47-0.73, P < 0.001). The benefit was also seen in the repeated analysis of matched and randomized studies. In stratified analysis, IVUS guidance appeared to be beneficial not only in patients with complex lesions or acute coronary syndromes (ACS) but also patients with mixed lesions or presentations (MACE: OR 0.69, 95 % CI: 0.60-0.79, p < 0.001, OR 0.81, 95 % CI 0.74-0.90, p < 0.001, respectively). By employing meta-regression analysis, the benefit of IVUS is significantly pronounced in patients with complex lesions or ACS with respect to death (p = 0.048). CONCLUSIONS: IVUS guidance was associated with improved clinical outcomes, especially in patients with complex lesions admitted with ACS. Large, randomized clinical trials are warranted to identify populations and lesion characteristics where IVUS guidance would be associated with better outcomes.


Assuntos
Angiografia Coronária , Doença da Artéria Coronariana/terapia , Vasos Coronários/diagnóstico por imagem , Stents Farmacológicos , Intervenção Coronária Percutânea/instrumentação , Ultrassonografia de Intervenção , Idoso , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/mortalidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Razão de Chances , Intervenção Coronária Percutânea/efeitos adversos , Intervenção Coronária Percutânea/mortalidade , Valor Preditivo dos Testes , Pontuação de Propensão , Medição de Risco , Fatores de Risco , Índice de Gravidade de Doença , Resultado do Tratamento
18.
Arch Toxicol ; 89(2): 233-42, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24819616

RESUMO

Perfluoroalkyl compounds (PFCs) have been shown to disrupt thyroid functions through thyroid hormone receptor (TR)-mediated pathways, but direct binding of PFCs with TR has not been demonstrated. We investigated the binding interactions of 16 structurally diverse PFCs with human TR, their activities on TR in cells, and the activity of perfluorooctane sulfonate (PFOS) in vivo. In fluorescence competitive binding assays, most of the 16 PFCs were found to bind to TR with relative binding potency in the range of 0.0003-0.05 compared with triiodothyronine (T3). A structure-binding relationship for PFCs was observed, where fluorinated alkyl chain length longer than ten, and an acid end group were optimal for TR binding. In thyroid hormone (TH)-responsive cell proliferation assays, PFOS, perfluorohexadecanoic acid, and perfluorooctadecanoic acid exhibited agonistic activity by promoting cell growth. Furthermore, similar to T3, PFOS exposure promoted expression of three TH upregulated genes and inhibited three TH downregulated genes in amphibians. Molecular docking analysis revealed that most of the tested PFCs efficiently fit into the T3-binding pocket in TR and formed a hydrogen bond with arginine 228 in a manner similar to T3. The combined in vitro, in vivo, and computational data strongly suggest that some PFCs disrupt the normal activity of TR pathways by directly binding to TR.


Assuntos
Fluorocarbonos/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Ligação Competitiva , Fluorescência , Fluorocarbonos/química , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
19.
Toxicol Appl Pharmacol ; 279(3): 275-283, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24998974

RESUMO

Perfluorinated compounds (PFCs) have been shown to disrupt lipid metabolism and even induce cancer in rodents through activation of peroxisome proliferator-activated receptors (PPARs). Lines of evidence showed that PPARα was activated by PFCs. However, the information on the binding interactions between PPARγ and PFCs and subsequent alteration of PPARγ activity is still limited and sometimes inconsistent. In the present study, in vitro binding of 16 PFCs to human PPARγ ligand binding domain (hPPARγ-LBD) and their activity on the receptor in cells were investigated. The results showed that the binding affinity was strongly dependent on their carbon number and functional group. For the eleven perfluorinated carboxylic acids (PFCAs), the binding affinity increased with their carbon number from 4 to 11, and then decreased slightly. The binding affinity of the three perfluorinated sulfonic acids (PFSAs) was stronger than their PFCA counterparts. No binding was detected for the two fluorotelomer alcohols (FTOHs). Circular dichroim spectroscopy showed that PFC binding induced distinctive structural change of the receptor. In dual luciferase reporter assays using transiently transfected Hep G2 cells, PFCs acted as hPPARγ agonists, and their potency correlated with their binding affinity with hPPARγ-LBD. Molecular docking showed that PFCs with different chain length bind with the receptor in different geometry, which may contribute to their differences in binding affinity and transcriptional activity.


Assuntos
Fluorocarbonos/toxicidade , PPAR gama/efeitos dos fármacos , Receptores Ativados por Proliferador de Peroxissomo/efeitos dos fármacos , Ligação Competitiva/efeitos dos fármacos , Ácidos Carboxílicos/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dicroísmo Circular , Corantes , Fluorocarbonos/metabolismo , Humanos , Modelos Moleculares , PPAR gama/genética , Ligação Proteica , Relação Estrutura-Atividade , Sais de Tetrazólio , Tiazóis , Transfecção
20.
Toxicol Appl Pharmacol ; 268(3): 256-63, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23402801

RESUMO

Polybrominated diphenyl ethers (PBDEs) have been shown to disrupt thyroid hormone (TH) functions in experimental animals, and one of the proposed disruption mechanisms is direct binding of hydroxylated PBDE (OH-PBDE) to TH receptors (TRs). However, previous data on TH receptor binding and TH activity of OH-PBDEs were very limited and sometimes inconsistent. In the present paper, we examined the binding potency of ten OH-PBDEs with different degrees of bromination to TR using a fluorescence competitive binding assay. The results showed that the ten OH-PBDEs bound to TR with potency that correlated to their bromination level. We further examined their effect on TR using a coactivator binding assay and GH3 cell proliferation assay. Different TR activities of OH-PBDEs were observed depending on their degree of bromination. Four low-brominated OH-PBDEs (2'-OH-BDE-28, 3'-OH-BDE-28, 5-OH-BDE-47, 6-OH-BDE-47) were found to be TR agonists, which recruited the coactivator peptide and enhanced GH3 cell proliferation. However, three high-brominated OH-PBDEs (3-OH-BDE-100, 3'-OH-BDE-154, 4-OH-BDE-188) were tested to be antagonists. Molecular docking was employed to simulate the interactions of OH-PBDEs with TR and identify the structural determinants for TR binding and activity. According to the docking results, low-brominated OH-PBDEs, which are weak binders but TR agonists, bind with TR at the inner side of its binding pocket, whereas high-brominated compounds, which are potent binders but TR antagonists, reside at the outer region. These results indicate that OH-PBDEs have different activities on TR (agonistic or antagonistic), possibly due to their different binding geometries with the receptor.


Assuntos
Éteres Difenil Halogenados/química , Éteres Difenil Halogenados/metabolismo , Halogenação/fisiologia , Receptores dos Hormônios Tireóideos/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Hidroxilação/fisiologia , Ligação Proteica/fisiologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA