Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Opt Express ; 31(2): 2523-2537, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785264

RESUMO

Ultrathin broadband absorber maintaining a near-uniform low reflectivity over a broadband wavelength is essential for many optical applications, such as light harvesting and nanoscale imaging. Recently, there has been considerable interest in employing arrays of high-index dielectric Mie resonators on surfaces to trap light and reduce the reflectivity. For such Mie-resonant metasurfaces, however, antireflection properties featuring both a flat low reflectance curve and a wide bandwidth are hard to be satisfied simultaneously, and an efficient large-scale nanofabrication technique rarely exists. Here, we present a high-throughput laser interference induced quasi-random patterning (LIIQP) technique to fabricate quasi-random Mie resonators in large scale. Mie resonators with feature sizes down to sub-100 nm have been fabricated using a 1064 nm laser source. Each Mie resonator concentrates light at its shape-dependent resonant frequency, and all such resonators are arranged quasi-randomly to provide both rich (with broadband Fourier components) and strong (with large intensities) Fourier spectra. Specifically, a near-uniform broadband reflectivity over 400-1100 nm spectrum region has been confined below 3% by fabricating a large-scale ultrathin (around 400 nm) absorber. Our concept and high-throughput fabrication technique allows the rapid production of quasi-random dielectric Mie-resonant metasurfaces in a controllable way, which can be used in various promising applications including thin-film solar cells, display, and imaging.

2.
Opt Express ; 30(12): 21931-21942, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224903

RESUMO

Optical solitons, particle-like excitations ubiquitous in many fields, can bind to form soliton molecules with striking molecule-like interactions. However, the exotic soliton interactions in soliton molecules are still largely unexplored in dual-wavelength mode-locked fiber lasers. Here, we reveal the dynamics of dissipative soliton molecules with periodic solitons collision in a dual-wavelength ultrafast fiber laser. The soliton molecules with a central wavelength of 1532.8 nm and 1561 nm exhibit conspicuously different evolution characteristics attributed to the difference in gain spectral intensity and trapped potential. The long-wavelength soliton molecule swiftly recovers to the initial state after collision, while the short-wavelength soliton molecule has a remarkable variation in temporal separation and operation state. Moreover, the multiple intensive repulsion and attraction in soliton molecule with energy transfer between leading and trailing solitons, and the formation of triplet soliton molecule in short-wavelength with multiple switching have also been observed. The different oscillating solutions coexisting in dual-wavelength soliton molecules involving oscillating and sliding phase evolution confirm the multistability of the dissipative system. These findings shed new insights into the dynamics of soliton molecules and solitons collision in nonlinear systems.

3.
Opt Lett ; 47(8): 1968-1971, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427313

RESUMO

The breathing dissipative soliton as a dynamic solution to many nonlinear systems has induced substantial interest in nonlinear photonics and ultrafast laser science. However, the exotic breathing multi-soliton dynamics are still largely unexplored in the bidirectional fiber laser compared to the unidirectional laser. Here, we reveal nonequilibrium dynamics of a breathing soliton pair (BSP) with energy transfer in a bidirectional laser; in particular, the dissociation and annihilation of the BSP was triggered by control over intra-cavity polarization. Optical rogue waves were detected simultaneously, and the collision of breathers significantly increased the intensity of rogue waves, which is characteristic of the bidirectional laser. Further, the buildup dynamics of the BSP with nanosecond pulse separation and a breathing soliton molecule were observed. Multiple single soliton explosions and transient pulse splitting are distinct features of soliton molecule buildup compared to the soliton pair. These findings shed new insights into the multiple breather dynamics of nonlinear systems.

4.
Opt Lett ; 47(8): 2048-2051, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427333

RESUMO

Two-photon microscopy (TPM) offers deeper imaging depth inside the scattering medium, however, it suffers from limited resolution owing to the longer excitation wavelength. We demonstrate the use of a hollow Gaussian beam (HGB) at the therapeutic window to improve the resolution and signal-to-background ratio (SBR). The HGB was produced by omitting the azimuthal phase term from the vortex mode, and the excitation point spread function (PSF) can be readily tuned by the mode order. The performance of the TPM with HGB was evaluated by experimentally imaging 100 nm fluorescent beads to estimate the PSF. The HGB improved the lateral resolution of the TPM by 36% in contrast to the conventional TPM. The HGB also furnishes an improvement of SBR by eliminating the out-of-focus light owing to its ring shape. Furthermore, we have used a translating lens-based module for additional lateral resolution tuning and reduced the resolution further down to 44% with respect to conventional TPM. Finally, we have performed imaging with merely two-dimensional scanning of a 50 µm thick mouse brain slice (Thy-YFP H-line) using the developed TPM with HGB. Our compact, robust, and low-cost design of the HGB generation scheme can easily be integrated into the commercial TPM to accommodate the improvements.


Assuntos
Microscopia , Fótons , Animais , Camundongos , Microscopia/métodos , Distribuição Normal
5.
Opt Lett ; 47(11): 2710-2713, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35648911

RESUMO

We demonstrate second-harmonic generation (SHG) microscopy excited by the ∼890-nm light frequency-doubled from a 137-fs, 19.4-MHz, and 300-mW all-fiber mode-locked laser centered at 1780 nm. The mode-locking at the 1.7-µm window is realized by controlling the emission peak of the gain fiber, and uses the dispersion management technique to broaden the optical spectrum up to 30 nm. The spectrum is maintained during the amplification and the pulse is compressed by single-mode fibers. The SHG imaging performance is showcased on a mouse skull, leg, and tail. Two-photon fluorescence imaging is also demonstrated on C. elegans labeled with green and red fluorescent proteins. The frequency-doubled all-fiber laser system provides a compact and efficient tool for SHG and fluorescence microscopy.


Assuntos
Caenorhabditis elegans , Lasers , Animais , Camundongos , Microscopia de Fluorescência , Imagem Óptica , Fótons
6.
Opt Express ; 28(26): 39563-39573, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33379502

RESUMO

It is a great challenge in two-photon microscopy (2PM) to have a high volumetric imaging speed without sacrificing the spatial and temporal resolution in three dimensions (3D). The structure in 2PM images could be reconstructed with better spatial and temporal resolution by the proper choice of the data processing algorithm. Here, we propose a method to reconstruct 3D volume from 2D projections imaged by mirrored Airy beams. We verified that our approach can achieve high accuracy in 3D localization over a large axial range and is applicable to continuous and dense sample. The effective field of view after reconstruction is expanded. It is a promising technique for rapid volumetric 2PM with axial localization at high resolution.

7.
Opt Lett ; 45(11): 3054-3057, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32479457

RESUMO

The resolution enhancement over the extended depth of field (DOF) in the volumetric two-photon microscopy (TPM) is demonstrated by utilizing multiple orders of Bessel beams. Here the conventional method of switching laser modes (SLAM) in 2D is introduced to 3D, denoted as the volumetric SLAM (V-SLAM). The equivalent scanning beam in the TPM is a thin needle-like beam, which is generated from the subtraction between the needle-like 0th-order and the straw-like 1st-order Bessel beams. Compared with the 0th-order Bessel beam, the lateral resolution of the V-SLAM is increased by 28.6% and maintains over the axial depth of 56 µm. The V-SLAM performance is evaluated by employing fluorescent beads and a mouse brain slice. The V-SLAM approach provides a promising solution to improve the lateral resolutions for fast volumetric imaging on sparsely distributed samples.

8.
Opt Express ; 27(20): 27459-27476, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684512

RESUMO

The ray-optics (RO) model is a reasonable method to calculate optical force in geometrical optics regime. However, the RO model fails to calculate the optical force produced by diffractive optical field and other arbitrary structured light beams. We propose the Fourier ray (FR) method to calculate the optical force for arbitrary incident beams. Combining the Fourier optics and the geometrical optics, the FRs are defined as rays that inlay on the plane waves weighted by the Fourier angular spectrum of the incident beam. According to traditional RO model and FR method, we can analyze optical forces on a microsphere immersed in various beams. To validate the FR method, forces of the fundamental Gaussian beam and Airy beam are respectively calculated and compared with traditional method. In addition, optical forces in three arbitrary structured light beams are demonstrated as well. Our simulations show that the FR method is able to evaluate the optical forces generated by diffractive optical field and complex structured light beams, and give a solid prediction of their trapping performances. In RO regime, the Fourier ray method is a universal method to predict the interaction between bead and complex optical field.

9.
Opt Lett ; 44(21): 5238-5241, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31674977

RESUMO

We demonstrate dual-Airy-beam-scanning-based volumetric two-photon microscopy (TPM) with depth-resolving capability. A pair of Airy beams with opposite acceleration is used as the excitation lights to sequentially illuminate the sample, and depth information can be resolved based on the deflection of the Airy beam. The depth-resolving range of the volumetric TPM is up to 32 µm. The advantages of the depth-resolved volumetric TPM are the depth-resolving capability over Bessel-beam-based TPM and less scanning times over traditional Gaussian-beam-based TPM. The depth-resolved volumetric TPM provides a promising fast imaging tool to study the dynamics in neural biology.

10.
Opt Lett ; 44(19): 4813-4816, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31568449

RESUMO

We unveil a new type of dissipative soliton behavior in a net-normal-dispersion bidirectional ultrafast fiber laser. That is, the bidirectional dissipative solitons will always reveal similar spectral and temporal characteristics through common gain and loss modulation, even if the transient instability is involved. The behavioral similarity enables us to accurately design the soliton patterns by introducing seed pulses through loss modulation. As a proof-of-concept application, the precise and flexible manipulation of multi-soliton patterns is demonstrated. These findings will shed new insights into the complex dissipative soliton dynamics and benefit the design of ultrafast lasers with desirable soliton patterns for practical applications.

11.
Opt Lett ; 44(2): 391-394, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30644908

RESUMO

We demonstrate a volumetric two-photon microscopy (TPM) using the non-diffracting Airy beam as illumination. Direct mapping of the imaging trajectory shows that the Airy beam extends the axial imaging range around six times longer than a traditional Gaussian beam does along the propagation direction, while maintaining a comparable lateral width. Benefiting from its non-diffracting nature, the TPM with Airy beam illumination is able not only to capture a volumetric image within a single frame, but also to acquire image structures behind a strongly scattered medium. The volumetric specimen is mapped layer by layer under Gaussian mode, while the three-dimensional structure is projected to a single two-dimensional image under Airy mode, leading to a significantly increased acquisition speed. The performance of the TPM is evaluated employing a phantom of agarose gel imbedding fluorescent beads as well as a mouse brain slice. Finally, we showcase the penetration ability of the developed Airy TPM by imaging through a scattering environment.


Assuntos
Microscopia/métodos , Fenômenos Ópticos , Fótons , Animais , Encéfalo/diagnóstico por imagem , Camundongos , Distribuição Normal , Imagens de Fantasmas
12.
Opt Express ; 26(6): 7324-7335, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29609289

RESUMO

Photons in an optical vortex usually carry orbital angular momentum, which boosts the application of the micro-rotation of absorbing particles and quantum information encoding. Such photons propagate along a straight line in free space or follow a curved trace once guided by an optical fiber. Teleportation of an optical vortex using a beam with non-diffraction and self-healing is quite challenging. We demonstrate the manipulation of the propagation trace of an optical vortex with a symmetric Airy beam (SAB) and found that the SAB experiences self-rotation with the implementation of a topological phase structure of coaxial vortex. Slight misalignment of the vortex and the SAB enables the guiding of the vortex into one of the self-accelerating channels. Multiple off-axis vortices embedded in SAB are also demonstrated to follow the trajectory of the major lobe for the SAB beam. The Poynting vector for the beams proves the direction of the energy flow corresponding to the intensity distribution. Hence, we anticipate that the proposed vortex symmetric Airy beam (VSAB) will provide new possibilities for optical manipulation and optical communication.

13.
Opt Lett ; 42(3): 627-630, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28146544

RESUMO

We report on the soliton-mediated orientational ordering of gold nanorods in a colloidal plasmonic suspension. Due to the nonlinear optical response of the suspension, a light beam forms an optical spatial soliton which creates an effective optical waveguide. The orientation of the nanorods along the waveguide is regulated by the optical torque exerted by the linearly polarized soliton beam. By measuring the polarization transmission spectrum of a probe beam at a wavelength far from the plasmonic resonance, we observe orientation-enhanced birefringence along the soliton channel, suggesting a disorder-to-order transition of nanorods due to the action of the soliton beam. This approach may be applied in other colloidal systems with optical force-induced nonlinearity.

14.
Opt Lett ; 41(16): 3817-20, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27519097

RESUMO

We demonstrate two different types of coupled beam propagation dynamics in colloidal gold nanosuspensions. In the first case, an infrared (IR) probe beam (1064 nm) is guided by a low-power visible beam (532 nm) in a gold nanosphere or in nanorod suspensions due to the formation of a plasmonic resonant soliton. Although the IR beam does not experience nonlinear self-action effects, even at high power levels, needle-like deep penetration of both beams through otherwise highly dissipative suspensions is realized. In the second case, a master/slave-type nonlinear coupling is observed in gold nanoshell suspensions, in which the nanoparticles have opposite polarizabilities at the visible and IR wavelengths. In this latter regime, both beams experience a self-focusing nonlinearity that can be fine-tuned.

15.
Appl Opt ; 54(27): 8030-5, 2015 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-26406501

RESUMO

Optical vortices are associated with a spatial phase singularity. Such a beam with a vortex is valuable in optical microscopy, hyper-entanglement, and optical levitation. In these applications, vortex beams with a perfect circle shape and a large topological charge are highly desirable. But the generation of perfect vortices with high topological charges is challenging. We present a novel method to create perfect vortex beams with large topological charges using a digital micromirror device (DMD) through binary amplitude modulation and a narrow Gaussian approximation. The DMD with binary holograms encoding both the spatial amplitude and the phase could generate fast switchable, reconfigurable optical vortex beams with significantly high quality and fidelity. With either the binary Lee hologram or the superpixel binary encoding technique, we were able to generate the corresponding hologram with high fidelity and create a perfect vortex with topological charge as large as 90. The physical properties of the perfect vortex beam produced were characterized through measurements of propagation dynamics and the focusing fields. The measurements show good consistency with the theoretical simulation. The perfect vortex beam produced satisfies high-demand utilization in optical manipulation and control, momentum transfer, quantum computing, and biophotonics.


Assuntos
Dispositivos Ópticos , Refratometria/instrumentação , Refratometria/métodos , Simulação por Computador , Desenho de Equipamento , Luz , Microscopia/instrumentação , Distribuição Normal , Óptica e Fotônica , Fótons , Física/métodos , Teoria Quântica , Espalhamento de Radiação
16.
Opt Express ; 22(22): 26763-76, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25401824

RESUMO

Recently, V. V. Kotlyar et al. [Opt. Lett.39, 2395 (2014)] have theoretically proposed a novel kind of three-parameter diffraction-free beam with a crescent profile, namely, the asymmetric Bessel (aB) beam. The asymmetry degree of such nonparaxial modes was shown to depend on a nonnegative real parameter c. We present a more generalized asymmetric Bessel mode in which the parameter c is a complex constant. This parameter controls not only the asymmetry degree of the mode but also the orientation of the optical crescent, and affects the energy distribution and orbital angular momentum (OAM) of the beam. As a proof of concept, the high-quality generation of asymmetric Bessel-Gauss beams was demonstrated with the super-pixel method using a digital micromirror device (DMD). We investigated the near-field properties as well as the far field features of such beams, and the experimental observations were in good agreement with the theoretical predictions. Additionally, we provided an effective way to control the beam's asymmetry and orientation, which may find potential applications in light-sheet microscopy and optical manipulation.

17.
Appl Opt ; 53(24): 5307-11, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25321100

RESUMO

The irradiance in microscopic lithography using a digital micro-mirror device (DMD) as a virtual digital mask generator is influenced by diffraction effects that have been exploited to fabricate microstructures. Based on the established model, the theoretical analysis and simulation of DMD diffraction characteristics has been studied. A novel method without masking to fabricate a micro-lens by pixilation of micro-mirrors inside the DMDs used in microscopic lithography has been proposed. It is a method of precise control of photon-induced curing behavior of photoresist by full use of diffraction effects and verification of the feasibility of the fabrication method based on diffraction. The introduced method provides an option for accurate and flexible micro-fabrication of microstructures.


Assuntos
Lentes , Fotografação/instrumentação , Refratometria/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização
18.
Appl Opt ; 52(19): 4566-75, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23842252

RESUMO

We experimentally demonstrated Bessel-like beams utilizing digital micromirror device (DMD). DMD with images imitating the equivalent axicon can shape the collimated Gaussian beam into Bessel beam. We reconstructed the 3D spatial field of the generated beam through a stack of measured cross-sectional images. The output beams have the profile of Bessel function after intensity modulation, and the beams extend at least 50 mm while the lateral dimension of the spot remains nearly invariant. Furthermore, the self-healing property has also been investigated, and all the experimental results agree well with simulated results numerically calculated through beam propagation method. Our observations demonstrate that the DMD offers a simple and efficient method to generate Bessel beams with distinct nondiffracting and self-reconstruction behaviors. The generated Bessel beams will potentially expand the applications to the optical manipulation and high-resolution fluorescence imaging owing to the unique nondiffracting property.


Assuntos
Imageamento Tridimensional/instrumentação , Luz , Microscopia/instrumentação , Algoritmos , Simulação por Computador , Radiação Eletromagnética , Desenho de Equipamento , Análise de Fourier , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Micromanipulação/instrumentação , Micromanipulação/métodos , Microscopia/métodos , Distribuição Normal , Software
19.
Commun Biol ; 6(1): 155, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750663

RESUMO

The dynamic assembly of the Synaptic-soluble N-ethylmaleimide-sensitive factor Attachment REceptor (SNARE) complex is crucial to understand membrane fusion. Traditional ensemble study meets the challenge to dissect the dynamic assembly of the protein complex. Here, we apply minute force on a tethered protein complex through dual-trap optical tweezers and study the folding dynamics of SNARE complex under mechanical force regulated by complexin-1 (CpxI). We reconstruct the clamp and facilitate functions of CpxI in vitro and identify different interplay mechanism of CpxI fragment binding on the SNARE complex. Specially, while the N-terminal domain (NTD) plays a dominant role of the facilitate function, CTD is mainly related to clamping. And the mixture of 1-83aa and CTD of CpxI can efficiently reconstitute the inhibitory signal identical to that the full-length CpxI functions. Our observation identifies the important chaperone role of the CpxI molecule in the dynamic assembly of SNARE complex under mechanical tension, and elucidates the specific function of each fragment of CpxI molecules in the chaperone process.


Assuntos
Pinças Ópticas , Proteínas SNARE , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Fusão de Membrana
20.
Appl Opt ; 49(10): 1838-44, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20357867

RESUMO

A digital micromirror device (DMD) modulates laser intensity through computer control of the device. We experimentally investigate the performance of the modulation property of a DMD and optimize the modulation procedure through image correction. Furthermore, Laguerre-Gaussian (LG) beams with different topological charges are generated by projecting a series of forklike gratings onto the DMD. We measure the field distribution with and without correction, the energy of LG beams with different topological charges, and the polarization property in sequence. Experimental results demonstrate that it is possible to generate LG beams with a DMD that allows the use of a high-intensity laser with proper correction to the input images, and that the polarization state of the LG beam differs from that of the input beam.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA