Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Electrophoresis ; 43(21-22): 2141-2155, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35661383

RESUMO

The utilization of an alternating current electric field provides a good means to achieve controlled coalescence between paired inner cores encapsulated in water-in-oil-in-water double-emulsion (DE) droplets. Although previous studies have experimentally determined the conditions under which inter-core electrokinetic fusion occurs, the transient interfacial dielectrophoretic (DEP) dynamics key to understand the underlying fluid mechanics is still unclear from a physical point of view. By coupling DEP motion of two-phase flow to phase-field formulation, bulk-coupled numerical simulations are conducted to characterize the spatial-temporal evolution of the surface charge wave and the resulting nonlinear electrical force induced at both the core/shell and medium/shell oil/water interfaces. The effect of interfacial charge relaxation and droplet geometry on inter-core attractive dipolar interaction is investigated within a wide parametric space, and four distinct device operation modes, including normal inter-core fusion, shell elongation, partial core leakage, and complete core release, are well distinguished from one another by flow regime argumentation. Our results herein reveal for the first time the hitherto unknown transient electrohydrodynamic fluid motion of DE droplet driven by Maxwell-Wagner structural polarization. The dynamic simulation method proposed in present study points out an effective outlet to predict the nonlinear electrokinetic behavior of multicore DE droplets for realizing a more controlled triggering of microscale reactions for a wide range of applications in drug discovery, skin care, and food industry.


Assuntos
Eletricidade , Emulsões/química
2.
Electrophoresis ; 43(21-22): 2074-2092, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36030405

RESUMO

We introduce herein an effective way for continuous delivery and position-switchable trapping of nanoparticles via field-effect control on hybrid electrokinetics (HEK). Flow field-effect transistor exploiting HEK delicately combines horizontal linear electroosmosis and transversal nonlinear electroosmosis of a shiftable flow stagnation line (FSL) on gate terminals under DC-biased AC forcing. The microfluidic nanoparticle concentrator proposed herein makes use of a simple device geometry, in which an individual or a series of planar metal strips serving as gate electrode (GE) are subjected to a hybrid gate voltage signal and arranged in parallel between a pair of 3D driving electrodes. On the application of a DC-biased AC electric field across channel length direction, all the GE are electrochemically polarized, and the action of imposed hybrid electric field on the multiple-frequency bipolar counterions within the composite-induced double layer generates two counter-rotating induced-charge electroosmotic (ICEO) micro-vortices on top of each GE. Symmetry breaking in ICEO flow profile occurs once the gate voltage deviates from natural floating potential of corresponding GE. The gate voltage offset not only results in an additional pump motion of working fluid for enhanced electroosmotic transport but also directly changes the location of FSL where nanoparticles are preferentially collected by field-effect HEK. Our results of field-effect control on HEK are supposed to guide an elaborate design of flexible electrokinetic frameworks embedding coplanar metal strips for a high degree of freedom analyte manipulation in modern micro-total-analytical systems.

3.
Soft Matter ; 18(3): 609-616, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34929022

RESUMO

The heart beating phenomenon of room temperature liquid metal (LM) mercury has attracted much attention in the past years, but its research and application are limited because of the low vapor pressure and high toxicity. Here, a fundamental scientific finding is reported that the non-toxic eutectic gallium indium (EGaIn) alloy droplets beat periodically at a certain frequency based on a floating electrode under the stimulation of the direct current (DC) field. The essential characteristics of heart beating are the displacement and the projected area change of the LM droplet. The mechanism of this phenomenon is the self-regulation of interfacial tension caused by chemical oxidation, chemical corrosion, and continuous electrowetting. In this article, a series of experiments are also carried out to examine the effects of different factors on the heartbeat, such as voltage, the volume of the droplet, the droplet immersion depth, the electrolyte solution concentration, the distance of electrodes, and the type of floating electrode. Finally, the heartbeat state and application boundary of the LM droplet under different conditions are summarized by imitating the human life process. The periodic changes of the LM droplet under an external DC electric field provide a new method to simulate the beating of the heart artificially, and can be applied to the research of organ chip fluid pumping in the future.


Assuntos
Eletroumectação , Gálio , Eletricidade , Eletrodos , Frequência Cardíaca , Humanos
4.
Anal Chem ; 93(3): 1667-1676, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33381971

RESUMO

Microalgae are renewable, sustainable, and economical sources of biofuels and are capable of addressing pressing global demand for energy security. However, two challenging issues to produce high-level biofuels are to separate promising algal strains and protect biofuels from contamination of undesired bacteria, which rely on an economical and high-resolution separation technology. Separation technology based on induced-charge electroosmotic (ICEO) vortices offers excellent promise in economical microalga separation for producing biofuels because of its reconfigurable and flexible profiles and sensitive and precise selectivity. In this work, a practical ICEO vortex device is developed to facilitate high-resolution isolation of rich-lipid microalgae for the first time. We investigate electrokinetic equilibrium states of particles and particle-fluid ICEO effect in binary-particle manipulation. Nanoparticle separation is performed to demonstrate the feasibility and resolution of this device, yielding clear separation. Afterward, we leverage this technology in isolation of Chlorella vulgaris from heterogeneous microalgae with the purity exceeding 96.4%. Besides, this platform is successfully engineered for the extraction of single-cell Oocystis sp., obtaining the purity surpassing 95.2%. Moreover, with modulating parameters, we isolate desired-cell-number Oocystis sp. enabling us to investigate proliferation mode and carry out transcriptome analyses of Oocystis sp. for high-quality neutral lipids. This platform can be extended directly to economically separate other biological micro/nanosamples to address pressing issues, involving energy security, environmental monitoring, and disease diagnosis.


Assuntos
Separação Celular , Chlorella vulgaris/citologia , Eletro-Osmose , Microalgas/citologia , Células Cultivadas , Tamanho da Partícula , Propriedades de Superfície
5.
Anal Chem ; 93(4): 2560-2569, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33410659

RESUMO

Flexible and accurate control of microswimmers is significant for lots of applications. Herein, we present a method for effective microswimmer manipulation in multiple microfluidic systems by thermal buoyancy-capillary convection. In the microdevice, four strips of microheaters arranged at the bottom of the microchannel are used to unevenly heat microfluids, and the convection flow forms under the influence of gravity and interfacial tension gradient. By adjusting the DC signals applied on these four heating elements, the intensity and direction of convection flow can be flexibly adjusted. Accordingly, granular samples dispersed in liquid buffer can be controllably driven to the target position by the Stokes drag. The swimming behavior of polystyrene (PS) microspheres at the solid-liquid interface of the device is first investigated. It shows that the PS microswimmers can migrate along various geometrical patterns by powering the microheaters with designed voltage combinations, and the migration velocity is positively affected by the increased voltage. Then, the butyl acrylate (BA) microswimmers are manipulated at the gas-liquid interface of the microchip. It turns out that the BA microswimmers migrate oppositely compared with PS swimmers under the same energization strategy. Additionally, the translation direction of BA swimmers can be changed over a 360° range by different voltage combinations. The multifunctionality of our approach is further demonstrated by conveniently driving the trimethylolpropane triacrylate microswimmers at the liquid-liquid interface of the microplatform along different directions and pathlines. Therefore, this technique can be promising for many cases needing granular sample control, such as cargo delivery and sensing.

6.
Anal Chem ; 93(29): 10220-10228, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34261311

RESUMO

Isolation of microalgal cells is as an indispensable part of producing biofuels for energy security and detecting toxic contaminants for marine routine monitoring. Microalgae live together with various microalgae naturally, and abundant samples need to be tackled in practical applications. Therefore, effective separation technologies need to be developed urgently to achieve high-throughput separation of various microalgae. Herein, we develop a reliable device to characterize the dielectric response of microalgae and sequentially separate various microalgae utilizing dielectrophoretic force in a bipolar electrode (BPE) arrayed device. First, by investigating the array width extension (AWE) effect on the electric- and flow-field distributions, we explore consequences of incidental electrohydrodynamic mechanisms and axial flow rate on the separation. Second, based on device performance on sample characterizations, we demonstrate this technology by separating microparticles in three- and five-channel devices. Third, we discriminate dead and live cells to explore its capability using the cell viability test and illustrate the AWE influence on the separation. Fourth, we characterize dielectric responses of different microalgae and separate C. vulgaris and Oocystis sp. Finally, we extended BPEs in length and developed an arrayed device for sequential separation of various microalgae, and this platform is successfully engineered in high-throughput isolation of C. vulgaris from complex samples. This technology presents good potential in addressing depleting fossil fuel and burgeoning environmental concerns due to its performance in the separation of microalgal strains from complex samples.


Assuntos
Clorófitas , Microalgas , Separação Celular , Eletrodos
7.
Anal Chem ; 93(21): 7635-7646, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34014074

RESUMO

Multiplex separation of mixed biological samples is essential in a considerable portion of biomedical research and clinical applications. An automated and operator-independent process for the separation of samples is highly sought after. There is a significant unmet need for methods that can perform fractionation of small volumes of multicomponent mixtures. Herein, we design an integrated chip that combines acoustic and electric fields to enable efficient and label-free separation of multiple different cells and particles under flow. To facilitate the connection of multiple sorting mechanisms in tandem, we investigate the electroosmosis (EO)-induced deterministic lateral displacement (DLD) separation in a combined pressure- and DC field-driven flow and exploit the combination of the bipolar electrode (BPE) focusing and surface acoustic wave (SAW) sorting modules. We successfully integrate four sequential microfluidic modules for multitarget separation within a single platform: (i) sorting particles and cells relying on the size and surface charge by adjusting the flow rate and electric field using a DLD array; (ii) alignment of cells or particles within a microfluidic channel by a bipolar electrode; (iii) separation of particles based on compressibility and density by the acoustic force; and (iv) separation of viable and nonviable cells using dielectric properties via the dielectrophoresis (DEP) force. As a proof of principle, we demonstrate the sorting of multiple cell and particle types (polystyrene (PS) particles, oil droplets, and viable and nonviable yeast cells) with high efficiency. This integrated microfluidic platform combines multiple functional components and, with its ability to noninvasively sort multiple targeted cells in a label-free manner relying on different properties, is compatible with high-definition imaging, showing great potential in diverse diagnostic and analysis applications.


Assuntos
Hidrodinâmica , Técnicas Analíticas Microfluídicas , Acústica , Separação Celular , Eletroforese , Microfluídica , Som
8.
Electrophoresis ; 42(7-8): 939-949, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32705697

RESUMO

We introduce herein an efficient microfluidic approach for continuous transport and localized collection of nanoparticles via hybrid electrokinetics, which delicately combines linear and nonlinear electrokinetics driven by a composite DC-biased AC voltage signal. The proposed technique utilizes a simple geometrical structure, in which one or a series of metal strips serving as floating electrode (FE) are attached to the substrate surface and arranged in parallel between a pair of coplanar driving electrodes (DE) in a straight microchannel. On application of a DC-biased AC electric field across the channel, nanoparticles can be transported continuously by DC bulk electroosmotic flow, and then trapped selectively onto the metal strips due to AC-field induced-charge electrokinetic (ICEK) phenomenon, which behaves as counter-rotating micro-vortices around the ideally polarizable surfaces of FE. Finite-element simulation is carried out by coupling the dual-frequency electric field, flow field and sample mass transfer in sequence, for guiding a practical design of the microfluidic nanoparticle concentrator. With the optimal device geometry, the actual performance of the technique is investigated with respect to DC bias, AC voltage amplitude, and field frequency by using both latex nanospheres (∼500 nm) and BSA molecules (∼10 nm). Our experimental observation indicates nanoparticles are always enriched into a narrow bright band on the surface of each FE, and a horizontal concentration gradient even emerges in the presence of multiple metal strips, which therefore permits localized analyte enrichment. The proposed trapping method is supposed to guide an elaborate design of flexible electrokinetic frameworks embedding FE for continuous-flow analyte manipulation in modern microfluidic systems.


Assuntos
Microfluídica , Nanopartículas , Eletricidade , Eletro-Osmose
9.
Electrophoresis ; 42(7-8): 950-966, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33119900

RESUMO

With the excellent merits of both solid conductors and rheological fluids, liquid metal (LM) provides new opportunities to serve as flexible building blocks of miniaturized electronic and fluidic devices. The phenomenon of continuous electrowetting (CEW) has been long utilized for actuating LM contents in buffer medium, wherein an externally imposed voltage difference is responsible of manipulating the interfacial tension of deformable LM droplets. CEW effectively lowers the surface tension at the LM/electrolyte interface by driving bipolar counterions to the surface of conducting droplet. Since surface tension coefficient relies sensitively on the local voltage drop across the induced double layer, an electric-analogy Marangoni effect occurs even under a rather weak electric field in the presence of a surface gradient of the interfacial tension. CEW of LM routinely induces unidirectional pumping of electrolyte in the direction of applied electric field, with LM droplet translating oppositely within the device channel. Although this subject has received great attention from the microfluidic society in the past decade, previous reports concerned either the individual delivery of the suspension medium or the transport of LM droplet. Starting from this point, we offer herein a fully coupled physical description of two-phase flow dynamics occurring in CEW. The proposed simulation model successfully incorporates the synergy of the interfacial electrokinetic momentum transfer, surface tension on a curved surface, contact angle at the three-phase contact line as well as the gravity force density. The spatial-temporal motion of the contact interface is traced instantly with a moving mesh approach. By direct numerical simulation, the importance of the direct-current bias, additional alternating-current forcing, droplet size, initial ion adsorption in the process of CEW is addressed. Additionally, it is discovered that increasing the number of LM droplet is more cost-effective than enhancing the volume of a single drop in terms of achieving an improvement of the resulted electrocapillary pump performance, while the translational speed of the discrete droplet carrier does not make an observable change in response to a variation in the drop number. These results prove invaluable in terms of an elaborate design of smart on-chip electrokinetic frameworks embedding flexible LM contents in modern micro-total-analytical systems.


Assuntos
Eletroumectação , Microfluídica , Simulação por Computador , Eletrólitos , Metais , Tensão Superficial
10.
Mol Med ; 26(1): 73, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32698821

RESUMO

BACKGROUND: Electroacupuncture (EA), a treatment derived from traditional Chinese medicine, can effectively improve hyperandrogenism and insulin resistance in patients with polycystic ovary syndrome (PCOS), however, its underlying mechanisms remain obscure. This study aimed to investigate whether EA could mitigate PCOS-like symptoms in rats by regulating autophagy. METHODS: A rat model of PCOS-like symptoms was established by subcutaneous injection with dehydroepiandrosterone (DHEA), and then EA treatment at acupoints (ST29 and SP6) was carried out for 5 weeks. To inhibit autophagy in rats, intraperitoneal injection with 0.5 mg/kg 3-MA (an autophagy inhibitor) was performed at 30 min before each EA treatment. RESULTS: EA intervention alleviated PCOS-like symptoms in rats, which was partly counteracted by the combination with 3-MA. Moreover, DHEA-exposure-induced deficient autophagy in skeletal muscle was improved by EA treatment. EA-mediated improvements in insulin resistance, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress in PCOS-like rats were counteracted by 3-MA pretreatment. Mechanically, EA attenuated autophagy deficiency-mediated insulin resistance in PCOS-like rats via inactivating mTOR/4E-BP1 signaling pathway. CONCLUSIONS: Taken together, our findings indicate that EA treatment ameliorates insulin resistance, mitochondrial dysfunction, and ER stress through enhancing autophagy in a PCOS-like rat model. Our study provides novel insight into the mechanisms underlying the treatment of EA in PCOS, which offers more theoretic foundation for its clinical application.


Assuntos
Autofagia , Eletroacupuntura , Estresse do Retículo Endoplasmático , Resistência à Insulina , Mitocôndrias/metabolismo , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/terapia , Animais , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Eletroacupuntura/métodos , Feminino , Imuno-Histoquímica , Mitocôndrias/genética , Músculo Esquelético/metabolismo , Síndrome do Ovário Policístico/diagnóstico , Síndrome do Ovário Policístico/etiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Resultado do Tratamento
11.
Anal Chem ; 92(3): 2778-2786, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-31909587

RESUMO

We present a novel approach that utilizes thermal buoyancy convection to achieve flexible particle focusing and switching in continuous flow of a microfluidic system. In this platform, three strip microheaters, A, B, and C, are symmetrically distributed at the bottom of microchannel, and they are isolated from the particle suspension by a thin glass slide. Continual transverse convection flow forms when the microheaters are energized by dc signals. The flow patterns are readily tuned by changing the energization strategies of the microheater array, leading to the modulation of the position of flow stagnation region. Accordingly, microparticles dispersed in fluids are rapidly focused to the flow stagnation region by the Stokes drag and thus form a continuous particle beam. The particle beam can also be switched to different lateral positions by adjusting the control voltages. This particle manipulation method is first demonstrated by respectively energizing these three microheaters and subsequently switching silica particles into different outlets. The lateral position of the particle beam then is flexibly controlled by simultaneously energizing microheaters A and B (or B and C) and adjusting the voltage applied on microheater A (or C). Furthermore, the versatility of this approach is proved by focusing and switching of microsized droplets, that is, oil-in-water and water-in-oil-in-water emulsion droplets. Finally, we use poly(ethylene glycol) diacrylate microgels, excellent reactant carriers, as an experimental sample and flexibly manipulate them in this microdevice, demonstrating this strategy's applicability for the cargo delivery. Therefore, this technique can be attractive for many particle preprocessing applications.

12.
Electrophoresis ; 41(10-11): 778-792, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31943244

RESUMO

We study herein numerically the use of induced-charge electrokinetic phenomena to enable a flexible control of ion transport of dilute electrolyte in a straight ion concentration polarization system. The effect of three convection modes of induced-charge electrokinetic phenomena, including induced-charge electroosmosis, flow-field effect transistor, and alternating-current electroosmosis (ACEO), on convective arrestment of diffusive wave-front propagation is investigated by developing a cross-scale and fully coupled transient numerical simulation model, wherein multiple frequency electrochemical polarization and nonlinear diffuse charge dynamics in spatiotemporally varying solution conductivity are taken into account. We demonstrate by detailed comparative simulation studies that ACEO vortex flow field above a metal strip array arranged along the anodic chamber's bottom surface serves as the most efficient way for adjusting the salt density distribution at micrometer and even millimeter dimension, due to its high flexibility in controlling the stirring flow state with the introduction of two extra electrical parameters. The specific operating status is determined by whether the electrode array is floating in potential (induced-charge electroosmosis) or biased to ground (flow-field effect transistor) or forced to oscillate at another Fourier mode (ACEO). These results prove useful for on-chip electric current control with electroconvective stirring.


Assuntos
Eletro-Osmose/métodos , Íons/química , Microfluídica/métodos , Simulação por Computador , Condutividade Elétrica , Eletrólitos/química , Dinâmica não Linear
13.
Pharm Biol ; 58(1): 1192-1198, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33253607

RESUMO

CONTEXT: Heart failure is one of the most serious diseases worldwide. Astragaloside IV (ASI) is widely used in the treatment of cardiovascular diseases. OBJECTIVE: To elucidate the antioxidative mechanism of ASI in a rat model of left coronary artery ligation. MATERIALS AND METHODS: Left coronary artery of Sprague-Dawley rats was ligated to establish the model of heart failure, and then vehicle (saline) or ASI (1 mg/kg/day) was orally administered to the rats (n = 15) for 6 weeks. Echocardiography was used to evaluate the cardiac function. Myocardial infarct size was measured by triphenyltetrazolium chloride staining. Oxidative stress in the ventricular myocardium was determined. Molecular mechanisms were investigated by Western blot and chromatin immunoprecipitation. RESULTS: ASI improved the cardiac function, especially ejection fraction (75.27 ± 5.75% vs. 36.26 ± 4.14%) and fractional shortening (45.39 ± 3.66% vs. 17.88 ± 1.32%), and reduced the infarct size of left ventricle (20.69 ± 2.98% vs. 39.11 ± 3.97%). ASI maintained the levels of glutathione, catalase and superoxide dismutase and prevented the leakage of creatine kinase. In addition, ASI induced the protein expression of Nrf2 (1.97-fold) and HO-1 (2.79-fold), while reduced that of Keap-1 (0.77-fold) in the ventricular myocardium. In H9c2 cells, a rat cardiomyocyte cell line, ASI induced the translocation of Nrf2 from cytoplasm to nucleus, followed by transcriptional activation of NQO-1 (8.27-fold), SOD-2 (3.27-fold) and Txn-1 (9.83-fold) genes. DISCUSSION AND CONCLUSIONS: ASI prevented heart failure by counteracting oxidative stress through the Nrf2/HO-1 pathway. Application in clinical practice warrants further investigation.


Assuntos
Antioxidantes/uso terapêutico , Cardiotônicos/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Saponinas/uso terapêutico , Triterpenos/uso terapêutico , Animais , Antioxidantes/farmacologia , Cardiotônicos/farmacologia , Linhagem Celular , Ecocardiografia , Heme Oxigenase-1/efeitos dos fármacos , Masculino , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia , Infarto do Miocárdio/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Saponinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Volume Sistólico , Análise de Sobrevida , Ativação Transcricional/efeitos dos fármacos , Triterpenos/farmacologia
14.
Anal Chem ; 91(7): 4457-4465, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30817882

RESUMO

Thermal-based microparticle focusing has recently received increasing attention due to its noninvasive nature and simple manipulation mechanism. However, its further application is limited by current complicated fluid heating systems and low particle focusing velocity. Using simple indium tin oxide-made microheaters, herein we propose a flexible and novel approach for efficient particle focusing based on direct current-induced thermal buoyancy convection. Importantly, for avoiding possible electrochemical reactions on the electrode, the microheaters are isolated from the granular fluids of interest by a thin glass slide. The concentration performance of the designed chip was first demonstrated by statically focusing 4-µm silica particles, yeast cells, silica particles in insulating buffer, and 100-nm copper microspheres. Also the trapping of a mixture of 5-µm and 2-µm polystyrene microbeads indicated that the chip can either simultaneously concentrate two kinds of particles or selectively focus the heavier ones by adjusting the voltages. Then the different concentration patterns of microbeads exhibited that the microspheres can be flexibly manipulated by changing the configurations of microheaters. Furthermore, for the first time, we achieved thermal-based continuous particle focusing in both conducting and insulating solutions using buoyancy convection, demonstrating that this method can be utilized to achieve both static and continuous particle manipulations in multiple liquid media. Finally, the feasibility of this device in effective wear measurement of machines was demonstrated by conducting systematic experiments of focusing nanocopper particles in the hydraulic oil. Therefore, this presented approach would be promising for a broad range of on-chip applications.

15.
Anal Chem ; 91(9): 5729-5738, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30938976

RESUMO

We propose a simplified multifunctional traffic control approach that effectively combines dielectrophoresis (DEP) and alternating current electrothermal (ACET) flow to realize continuous particle trapping, switching, and sorting. In the designed microsystem, the combined DEP and ACET effects, which are symmetrically generated above a bipolar electrode surface, contribute to focus the incoming colloidal particles into a thin beam. Once the bipolar electrode is energized with an electric gate signal completely in phase with the driving alternating current (AC) signal, the spatial symmetry of the electric field can be artificially reordered by adjusting the gate voltage through field-effect traffic control. This results in a reshapable field stagnant region for precise switching of particles into the region of interest. Moreover, the integrated particle switching prior to the scaled particle trapping experiment is successfully conducted to demonstrate the feasibility of the combined strategy. Furthermore, a mixture of two types of particle sorting (i.e., density, size) with quick response performance is achieved by increasing the driving voltage with a maximum gate voltage offset, thus, extending the versatility of the designed device. Finally, droplet switching and filtration of the satellite droplets from the parent droplets is performed to successfully permit control of the droplet traffic. The proposed traffic control approach provides a promising technique for flexible manipulation of particulate samples and can be conveniently integrated with other micro/nanofluidic components into a complete functional on-chip platform owing to its simple geometric structure, easy operation, and multifunctionality.

16.
Small ; 15(42): e1903098, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31464378

RESUMO

The separate co-encapsulation and selective controlled release of multiple encapsulants in a predetermined sequence has potentially important applications for drug delivery and tissue engineering. However, the selective controlled release of distinct contents upon one triggering event for most existing microcarriers still remains challenging. Here, novel microfluidic fabrication of compound-droplet-pairs-filled hydrogel microfibers (C-Fibers) is presented for two-step selective controlled release under AC electric field. The parallel arranged compound droplets enable the separate co-encapsulation of distinct contents in a single microfiber, and the release sequence is guaranteed by the discrepancy of the shell thickness or core conductivity of the encapsulated droplets. This is demonstrated by using a high-frequency electric field to trigger the first burst release of droplets with higher conductivity or thinner shell, followed by the second release of the other droplets under low-frequency electric field. The reported C-Fibers provide novel multidelivery system for a wide range of applications that require controlled release of multiple ingredients in a prescribed sequence.


Assuntos
Eletricidade , Hidrogéis/química , Preparações de Ação Retardada/farmacologia , Condutividade Elétrica , Emulsões/química , Microfluídica , Óleos/química , Reologia , Fatores de Tempo
17.
Electrophoresis ; 40(20): 2683-2698, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30883820

RESUMO

The phenomenon of electrothermal (ET) convection has recently captured great attention for transporting fluidic samples in microchannels embedding simple electrode structures. In the classical model of ET-induced flow, a conductivity gradient of buffer medium is supposed to arise from temperature-dependent electrophoretic mobility of ionic species under uniform salt concentrations, so it may not work well in the presence of evident concentration perturbation within the background electrolyte. To solve this problem, we develop herein a microscopic physical description of ET streaming by fully coupling a set of Poisson-Nernst-Planck-Navier-Stokes equations and temperature-dependent fluid physicochemical properties. A comparative study on a standard electrokinetic micropump exploiting asymmetric electrode arrays indicates that, our microscopic model always predicts a lower ET pump flow rate than the classical macroscopic model even with trivial temperature elevation in the liquid. Considering a continuity of total current density in liquids of inhomogeneous polarizability, a moderate degree of fluctuation in ion concentrations on top of the electrode array is enough to exert a significant influence on the induction of free ionic charges, rendering the enhanced numerical treatment much closer to realistic experimental measurement. Then, by placing a pair of thin-film resistive heaters on the bottom of an anodic channel interfacing a cation-exchange medium, we further provide a vivid demonstration of the enhanced model's feasibility in accurately resolving the combined Coulomb force due to the coexistence of an extended space charge layer and smeared interfacial polarizations in an externally-imposed temperature gradient, while this is impossible with conventional linear approximation. This leads to a reliable method to achieve a flexible regulation on spatial-temporal evolution of ion-depletion layer by electroconvective mixing. These results provide useful insights into ET-based flexible control of micro/nanoscale solid entities in modern micro-total-analytical systems.


Assuntos
Técnicas Eletroquímicas/métodos , Técnicas Analíticas Microfluídicas/métodos , Microscopia/métodos , Nanotecnologia/métodos , Simulação por Computador , Convecção , Técnicas Eletroquímicas/instrumentação , Desenho de Equipamento , Íons/química , Técnicas Analíticas Microfluídicas/instrumentação , Microscopia/instrumentação , Nanotecnologia/instrumentação , Cloreto de Sódio/química
18.
Electrophoresis ; 40(6): 979-992, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30256428

RESUMO

Induced-charge electroosmosis (ICEO) has attracted tremendous popularity for driving fluid motion from the microfluidic community since the last decade, while less attention has been paid to ICEO-based nanoparticle manipulation. We propose herein a unique concept of hybrid electroosmotic kinetics (HEK) in terms of bi-phase ICEO (BICEO) actuated in a four-terminal spiral electrode array, for effective electrokinetic enrichment of fluorescent polystyrene nanoparticles on ideally polarizable metal strips. First, by alternating the applied AC voltage waves between consecutive discrete terminals, the flow stagnation lines where the sample nanoparticles aggregate can be switched in time between two different distribution modes. Second, we innovatively introduce the idea of AC field-effect flow control on BICEO; by altering the combination of gating voltage sequence, not only the number of circulative particle trapping lines is doubled, but the collecting locations can be flexibly reconfigured as well. Third, hydrodynamic streaming of DC-biased BICEO is tested in our device design, wherein the global linear electroosmosis dominates BICEO contributed from both AC and DC components, resulting in a reduction of particle enrichment area, while with a sharp increase in sample transport speed inside the bulk phase. The flow field associated with HEK is predicted using a linear asymptotic analysis under Debye-Huckel limit, with the simulation results in qualitative agreement with in-lab observations of nanoparticle trapping by exploiting a series of improved ICEO techniques. This work provides an affordable and field-deployable platform for real-time nanoparticle trapping in the context of dilute electrolyte.


Assuntos
Eletro-Osmose/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Nanopartículas/química , Eletricidade , Eletro-Osmose/métodos , Desenho de Equipamento , Cinética , Microeletrodos
19.
Analyst ; 144(17): 5150-5163, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31342972

RESUMO

Five arc-shaped gaps were designed on the bipolar electrode to actuate alternately opposite-direction asymmetrical induced-charge electro-osmosis (AICEO) vortices, and we developed a microfluidic device using such asymmetrical vortices to realize particle separation. When the buoyancy force dominates in the vertical direction, particles stay at the channel bottom, experiencing a left deflection under the vortices in the convex arc areas. In contrast, when the levitation force induced by AICEO vortices overcomes the buoyancy force, particles are elevated to a high level and captured by right vortices, undergoing a right deflection under the vortices in the concave arc areas. Moreover, when particles pass through the concave or convex arc areas every time, their right or left deflections are enlarged gradually and the separation becomes more complete. Remarkably, as the light/small particles at low voltage, heavy/large particles can be elevated to a new high level and undergo right deflection by increasing the voltage. We first explicitly proved the separation principle and analyzed numerically its capability in density- and size-based separation. Depending on the study of the voltage-dependent AICEO characterization of 4 µm silica and 4 µm PMMA particles, we experimentally verified the feasibility of our device in density-based separation. According to the investigation of sensitivity to particle size, we separated multi-sized yeast cells to confirm the capability of our device in size-based separation. Finally, we extracted yeast cells from impeding particles, obtaining 96% purity. Additionally, we designed a 500 µm distance between the focusing and separation region to circumvent the problems caused by electric-field interaction. Our AICEO-based separation method holds potential to serve as a useful tool in transesterification of microalgal lipids to biodiesel and solar cell processing because of its outstanding advantages, such as gentle conditions, contact-free separation, high-sensitivity and high-efficiency separation capability.

20.
Anal Chem ; 90(19): 11461-11469, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30192521

RESUMO

Microfluidic systems have been developed widely in scaled-down processes of laboratory techniques, but they are usually limited in achieving stand-alone functionalities. It is highly desirable to exploit an integrated microfluidic device with multiple capabilities such as cell separation, single-cell trapping, and cell manipulation. Herein, we reported a microfluidic platform integrated with actuation electrodes, for separating cells and microbeads, and bipolar electrodes, for trapping, rotating, and propelling single cells and microbeads. The separation of cells and microbeads can be first achieved by deflective dielectrophoresis (DEP) barriers. Trapping experiments with yeast cells and polystyrene (PS) microbeads suspended in aqueous solutions with different conductivities were then conducted, showing that both cells and particles can be trapped at the center of wireless electrodes by negative DEP force. Upon application of a rotating electric field, yeast cells exhibit translational movement along the electrode edges, and self-rotation is seen at an array of bipolar electrodes when electrorotational torque and traveling wave DEP force are applied on the cells. The current approach allows us to switch the propulsion and rotation direction of cells by varying the frequency of the applied electric field. Beyond the achievements of single-cell manipulation, this system permits effective control of several particles or cells simultaneously. The integration of parallel sorting and single trapping stages within a microfluidic chip enables the prospect of high-throughput cell separation, single trapping, and large-scale cell locomotion and rotation in a noninvasive and disposable format, showing great potential in single-cell analysis, targeted drug delivery, and surgery.


Assuntos
Separação Celular/métodos , Saccharomyces cerevisiae/isolamento & purificação , Separação Celular/instrumentação , Condutividade Elétrica , Eletrodos , Eletroforese , Dispositivos Lab-On-A-Chip , Microesferas , Poliestirenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA