Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 43(7): 1686-1698, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34811513

RESUMO

Chronic administration of methamphetamine (METH) leads to physical and psychological dependence. It is generally accepted that METH exerts rewarding effects via competitive inhibition of the dopamine transporter (DAT), but the molecular mechanism of METH addiction remains largely unknown. Accumulating evidence shows that mitochondrial function is important in regulation of drug addiction. In this study,  we investigated the role of Clk1, an essential mitochondrial hydroxylase for ubiquinone (UQ), in METH reward effects. We showed that Clk1+/- mutation significantly suppressed METH-induced conditioned place preference (CPP), accompanied by increased expression of DAT in plasma membrane of striatum and hippocampus due to Clk1 deficiency-induced inhibition of DAT degradation without influencing de novo synthesis of DAT. Notably, significantly decreased iron content in striatum and hippocampus was evident in both Clk1+/- mutant mice and PC12 cells with Clk1 knockdown. The decreased iron content was attributed to increased expression of iron exporter ferroportin 1 (FPN1) that was associated with elevated expression of hypoxia-inducible factor-1α (HIF-1α) in response to Clk1 deficiency both in vivo and in vitro. Furthermore, we showed that iron played a critical role in mediating Clk1 deficiency-induced alteration in DAT expression, presumably via upstream HIF-1α. Taken together, these data demonstrated that HIF-1α-mediated changes in iron homostasis are involved in the Clk1 deficiency-altered METH reward behaviors.


Assuntos
Metanfetamina , Animais , Corpo Estriado/metabolismo , Homeostase , Ferro/metabolismo , Metanfetamina/farmacologia , Camundongos , Ratos , Recompensa
2.
Acta Pharmacol Sin ; 37(10): 1315-1324, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27374489

RESUMO

AIM: It is general believed that mitochondrial dysfunction and oxidative stress play critical roles in the pathology of Parkinson's disease (PD). Dihydromyricetin (DHM), a natural flavonoid extracted from Ampelopsis grossedentata, has recently been found to elicit potent anti-oxidative effects. In the present study, we explored the role of DHM in protecting dopaminergic neurons. METHODS: Male C57BL/6 mice were intraperitoneally injected with 1-methyl4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 7 d to induce PD. Additionally, mice were treated with either 5 or 10 mg/kg DHM for a total of 13 d (3 d before the start of MPTP, during MPTP administration (7 d) and 3 d after the end of MPTP). For the saline or DHM alone treatment groups, mice were injected with saline or DHM for 13 d. On d 14, behavioral tests (locomotor activity, the rotarod test and the pole test) were administered. After the behavioral tests, the mice were sacrificed, and brain tissue was collected for immunofluorescence staining and Western blotting. In addition, MES23.5 cells were treated with MPP+ and DHM, and evaluated using cell viability assays, reactive oxygen species (ROS) measurements, apoptosis analysis and Western blotting. RESULTS: DHM significantly attenuated MPTP-induced mouse behavioral impairments and dopaminergic neuron loss. In the MES23.5 cells, DHM attenuated MPP+-induced cell injury and ROS production in a dose-dependent manner. In addition, DHM increased glycogen synthase kinase-3 beta phosphorylation in a dose- and time-dependent manner, which may be associated with DHM-induced dopaminergic neuronal protection. CONCLUSION: The present study demonstrated that DHM is a potent neuroprotective agent for DA neurons by modulating the Akt/GSK-3ß pathway, which suggests that DHM may be a promising therapeutic candidate for PD.


Assuntos
Flavonóis/uso terapêutico , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Linhagem Celular , Masculino , Camundongos Endogâmicos C57BL , Doença de Parkinson/etiologia , Ratos
3.
CNS Neurosci Ther ; 23(2): 174-187, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27996211

RESUMO

INTRODUCTION: Impaired dopamine D1 receptor (D1R) function in prefrontal cortex (PFC) is believed to contribute to the PFC hypofunction that has been hypothesized to be associated with negative symptoms and cognitive deficits in schizophrenia. It is therefore critical to understand the mechanisms for modulation of D1R function. AIMS: To investigate the physical interaction and functional modulation between D1R and GSK-3ß. RESULTS: D1R and GSK-3ß physically interact in cultured cells and native brain tissues. This direct interaction was found to occur at the S(417)PALS(421) motif in the C-terminus of D1R. Inhibition of GSK-3ß impaired D1R activation along with a decrease in D1R-GSK-3ß interaction. GSK-3ß inhibition reduced agonist-stimulated D1R desensitization and endocytosis, the latter associated with the reduction of membrane translocation of ß-arrestin-2. Similarly, inhibition of GSK-3ß in rat PFC also resulted in impaired D1R activation and association with GSK-3ß. Moreover, in a NMDA antagonist animal model of schizophrenia, we detected a decrease in prefrontal GSK-3ß activity and D1R-GSK-3ß association and decreased D1R activation in the PFC. CONCLUSIONS: The present work identified GSK-3ß as a new interacting protein for D1R functional regulation and revealed a novel mechanism for GSK-3ß-regulated D1R function which may underlie D1R dysfunction in schizophrenia.


Assuntos
Glicogênio Sintase Quinase 3 beta/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de Dopamina D1/metabolismo , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Adjuvantes Imunológicos/farmacologia , Animais , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Agonistas de Dopamina/farmacologia , Endocitose/efeitos dos fármacos , Endocitose/genética , Inibidores Enzimáticos/farmacologia , Fenoldopam/farmacologia , Glicogênio Sintase Quinase 3 beta/genética , Guanosina 5'-O-(3-Tiotrifosfato)/farmacocinética , Células HEK293 , Humanos , Indóis/farmacologia , Cloreto de Lítio/farmacologia , Maleimidas/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos , Esquizofrenia/induzido quimicamente , beta-Arrestinas/metabolismo
4.
J Biomed Mater Res B Appl Biomater ; 105(5): 1114-1125, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27008163

RESUMO

The development of effective and stable carriers of small interfering RNA (siRNA) is important for treating cancer with multidrug resistance (MDR). We developed a new gene and drug co-delivery system and checked its characteristics. Low-density lipoprotein (LDL) was coupled with N-succinyl chitosan (NSC) Lipoic acid (LA) micelles and co-delivered MDR1 siRNA and paclitaxel (PTX-siRNA/LDL-NSC-LA) to enhance antitumor effects by silencing the MDR gene of tumors (Li et al., Adv Mater 2014;26:8217-8224). In our study, we developed a new type of containing paclitaxel-loaded micelles and siRNA-loaded LDL nanoparticle. This "binary polymer" is pH and reduction dual-sensitive core-crosslinked micelles. PTX-siRNA/LDL-NSC-LA had an average particle size of (171.6 ± 6.42) nm, entrapment efficiency of (93.92 ± 1.06) %, and drug-loading amount of (12.35% ± 0.87) %. In vitro, MCF-7 cells, high expressed LDL receptor, were more sensitive to this delivery system than to taxol® and cell activity was inhibited significantly. Fluorescence microscopy showed that PTX-siRNA/LDL-NSC-LA was uptaken very conveniently and played a key role in antitumor activity. PTX-siRNA/LDL-NSC-LA protected the siRNA from degradation by macrophage phagocytosis and evidently down-regulated the level of mdr1 mRNA as well as the expression of P-gp. We tested the target ability of PTX-siRNA/LDL-NSC-LA in vivo in tumor-bearing nude mice. Results showed that this system could directly deliver siRNA and PTX to cancer cells. Thus, new co-delivering siRNA and antitumor drugs should be explored for solving MDR in cancer. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1114-1125, 2017.


Assuntos
Quitosana , Técnicas de Transferência de Genes , Lipoproteínas LDL , Micelas , Proteínas de Neoplasias , Neoplasias Experimentais , Paclitaxel/farmacologia , RNA Interferente Pequeno , Ácido Tióctico , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/biossíntese , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Quitosana/química , Quitosana/farmacologia , Feminino , Humanos , Lipoproteínas LDL/química , Lipoproteínas LDL/farmacologia , Células MCF-7 , Camundongos , Camundongos Nus , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética , Ácido Tióctico/química , Ácido Tióctico/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA