Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genomics ; 113(1 Pt 2): 1166-1175, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33227411

RESUMO

BACKGROUND: In view of the critical role of autophagy-related genes (ARGs) in the pathogenesis of various diseases including cancer, this study aims to identify and evaluate the potential value of ARGs in head and neck squamous cell carcinoma (HNSCC). METHODS: RNA sequencing and clinical data in The Cancer Genome Atlas (TCGA) were analyzed by univariate Cox regression analysis and Lasso Cox regression analysis model established a novel 13- autophagy related prognostic genes, which were used to build a prognostic risk model. A multivariate Cox proportional regression model and the survival analysis were used to evaluate the prognostic risk model. Moreover, the efficiency of prognostic risk model was tested by receiver operating characteristic (ROC) curve analysis based on data from TCGA database and Gene Expression Omnibus (GEO). Besides, the other independent datasets from Human Protein Atlas dataset (HPA) also applied. RESULTS: 13 ARGs (GABARAPL1, ITGA3, USP10, ST13, MAPK9, PRKN, FADD, IKBKB, ITPR1, TP73, MAP2K7, CDKN2A, and EEF2K) with prognostic value were identified in HNSCC patients. Subsequently, a prognostic risk model was established based on 13 ARGs, and significantly stratified HNSCC patients into high- and low-risk groups in terms of overall survival (OS) (HR = 0.379,95% CI: 0.289-0.495, p < 0.0001). The multivariate Cox analysis revealed that this model was an independent prognostic factor (HR = 1.506, 95% CI = 1.330-1.706, P < 0.001). The areas under the ROC curves (AUC) were significant for both the TCGA and GEO, with AUC of 0.685 and 0.928 respectively. Functional annotation revealed that model significantly enriched in many critical pathways correlated with tumorigenesis, including the p53 pathway, IL2 STAT5 signaling, TGF beta signaling, PI3K Ak mTOR signaling by gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA). In addition, we developed a nomogram shown some clinical net could be used as a reference for clinical decision-making. CONCLUSIONS: Collectively, we developed and validated a novel robust 13-gene signatures for HNSCC prognosis prediction. The 13 ARGs could serve as an independent and reliable prognostic biomarkers and therapeutic targets for the HNSCC patients.


Assuntos
Autofagia/genética , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/genética , Neoplasias de Cabeça e Pescoço/genética , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/normas , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Biologia Computacional , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Redes e Vias Metabólicas/genética , Farmacologia em Rede , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA