Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell ; 165(3): 566-79, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27087445

RESUMO

Hepatic glucose release into the circulation is vital for brain function and survival during periods of fasting and is modulated by an array of hormones that precisely regulate plasma glucose levels. We have identified a fasting-induced protein hormone that modulates hepatic glucose release. It is the C-terminal cleavage product of profibrillin, and we name it Asprosin. Asprosin is secreted by white adipose, circulates at nanomolar levels, and is recruited to the liver, where it activates the G protein-cAMP-PKA pathway, resulting in rapid glucose release into the circulation. Humans and mice with insulin resistance show pathologically elevated plasma asprosin, and its loss of function via immunologic or genetic means has a profound glucose- and insulin-lowering effect secondary to reduced hepatic glucose release. Asprosin represents a glucogenic protein hormone, and therapeutically targeting it may be beneficial in type II diabetes and metabolic syndrome.


Assuntos
Jejum/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fragmentos de Peptídeos/metabolismo , Hormônios Peptídicos/metabolismo , Tecido Adiposo Branco/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/administração & dosagem , Ritmo Circadiano , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Jejum/sangue , Feminino , Retardo do Crescimento Fetal/metabolismo , Fibrilina-1 , Glucose/metabolismo , Humanos , Insulina/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Proteínas dos Microfilamentos/sangue , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Dados de Sequência Molecular , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Hormônios Peptídicos/sangue , Hormônios Peptídicos/química , Hormônios Peptídicos/genética , Progéria/metabolismo , Proteínas Recombinantes/administração & dosagem , Alinhamento de Sequência
2.
Prenat Diagn ; 35(13): 1294-300, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26348874

RESUMO

PURPOSE: A common source of loss in signal-to-noise ratio (SNR) in fetal brain magnetic resonance spectroscopy (MRS) is from fetal movement and temporal magnetic field drift. We investigated the feasibility of using constructive averaging strategies for improving the spectral quality and recovering the SNR loss from these effects. MATERIALS AND METHODS: Eight fetuses, between 20 3/7 and 38 2/7 weeks' gestation, were scanned with MRS at 1.5 T. Single-voxel point-resolved spectroscopy of the fetal brain with TE = 144 ms (in one case additional TE = 288 ms) was performed in a dynamic mode, and individual spectra of 128 acquisitions were saved. With constructive averaging strategy individual acquisitions were corrected for phase variations and frequency drift before averaging. Constructively averaged spectra were compared to those using conventional averaging to evaluate differences in spectral quality and SNR. RESULTS: The definition of key metabolite peaks was qualitatively improved using constructive averaging, including the doublet structure of lactate in one case. Constructive averaging was associated with SNR increases, ranging from 11% to 40%, and the SNR further improved in one case when outliers from severe motion were rejected before averaging. CONCLUSION: Our results demonstrate the feasibility of using constructive averaging for improving SNR in fetal MRS, which is likely to improve the characterization of fetal brain metabolites.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Neuroimagem/métodos , Diagnóstico Pré-Natal/métodos , Estudos de Viabilidade , Feminino , Humanos , Gravidez
3.
Radiat Res ; 188(1): 56-65, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28475423

RESUMO

The abscopal effect is the response to radiation at sites that are distant from the irradiated site of an organism, and it is thought to play a role in bone marrow (BM) recovery by initiating responses in the unirradiated bone marrow. Understanding the mechanism of this effect has applications in treating BM failure (BMF) and BM transplantation (BMT), and improving survival of nuclear disaster victims. Here, we investigated the use of multimodality imaging as a translational tool to longitudinally assess bone marrow recovery. We used positron emission tomography/computed tomography (PET/CT), magnetic resonance imaging (MRI) and optical imaging to quantify bone marrow activity, vascular response and marrow repopulation in fully and partially irradiated rodent models. We further measured the effects of radiation on serum cytokine levels, hematopoietic cell counts and histology. PET/CT imaging revealed a radiation-induced increase in proliferation in the shielded bone marrow (SBM) compared to exposed bone marrow (EBM) and sham controls. T2-weighted MRI showed radiation-induced hemorrhaging in the EBM and unirradiated SBM. In the EBM and SBM groups, we found alterations in serum cytokine and hormone levels and in hematopoietic cell population proportions, and histological evidence of osteoblast activation at the bone marrow interface. Importantly, we generated a BMT mouse model using fluorescent-labeled bone marrow donor cells and performed fluorescent imaging to reveal the migration of bone marrow cells from shielded to radioablated sites. Our study validates the use of multimodality imaging to monitor bone marrow recovery and provides evidence for the abscopal response in promoting bone marrow recovery after irradiation.


Assuntos
Medula Óssea/diagnóstico por imagem , Medula Óssea/efeitos da radiação , Efeito Espectador/imunologia , Imagem Multimodal/métodos , Proteção Radiológica/métodos , Animais , Medula Óssea/imunologia , Efeito Espectador/efeitos da radiação , Relação Dose-Resposta à Radiação , Feminino , Masculino , Camundongos , Dosagem Radioterapêutica , Ratos , Ratos Sprague-Dawley
4.
PLoS One ; 12(1): e0169082, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28052129

RESUMO

Positron emission tomography using 18F-Fluro-deoxy-glucose (18F-FDG) is a useful tool to detect regions of inflammation in patients. We utilized this imaging technique to investigate the kinetics of gastrointestinal recovery after radiation exposure and the role of bone marrow in the recovery process. Male Sprague-Dawley rats were either sham irradiated, irradiated with their upper half body shielded (UHBS) at a dose of 7.5 Gy, or whole body irradiated (WBI) with 4 or 7.5 Gy. Animals were imaged using 18F-FDG PET/CT at 5, 10 and 35 days post-radiation exposure. The gastrointestinal tract and bone marrow were analyzed for 18F-FDG uptake. Tissue was collected at all-time points for histological analysis. Following 7.5 Gy irradiation, there was a significant increase in inflammation in the gastrointestinal tract as indicated by the significantly higher 18F-FDG uptake compared to sham. UHBS animals had a significantly higher activity compared to 7.5 Gy WBI at 5 days post-exposure. Animals that received 4 Gy WBI did not show any significant increase in uptake compared to sham. Analysis of the bone marrow showed a significant decrease of uptake in the 7.5 Gy animals 5 days post-irradiation, albeit not observed in the 4 Gy group. Interestingly, as the metabolic activity of the gastrointestinal tract returned to sham levels in UHBS animals it was accompanied by an increase in metabolic activity in the bone marrow. At 35 days post-exposure both gastrointestinal tract and bone marrow 18F-FDG uptake returned to sham levels. 18F-FDG imaging is a tool that can be used to study the inflammatory response of the gastrointestinal tract and changes in bone marrow metabolism caused by radiation exposure. The recovery of the gastrointestinal tract coincides with an increase in bone marrow metabolism in partially shielded animals. These findings further demonstrate the relationship between the gastrointestinal syndrome and bone marrow recovery, and that this interaction can be studied using non-invasive imaging modalities.


Assuntos
Medula Óssea/lesões , Fluordesoxiglucose F18/análise , Trato Gastrointestinal/efeitos da radiação , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Lesões por Radiação/etiologia , Animais , Medula Óssea/efeitos dos fármacos , Trato Gastrointestinal/lesões , Inflamação/etiologia , Cinética , Masculino , Ratos , Ratos Sprague-Dawley
5.
J Nucl Med ; 57(2): 266-71, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26315835

RESUMO

UNLABELLED: We present and test the use of multimodality imaging as a topological tool to map the amount of the body exposed to ionizing radiation and the location of exposure, which are important indicators of survival and recovery. To achieve our goal, PET/CT imaging with 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) was used to measure cellular proliferation in bone marrow (BM), whereas MRI using ultra-small superparamagnetic iron oxide (USPIO) particles provided noninvasive information on radiation-induced vascular damage. METHODS: Animals were x-ray-irradiated at a dose of 7.5 Gy with 1 of 3 radiation schemes-whole-body irradiation, half-body shielding (HBS), or 1-leg shielding (1LS)-and imaged repeatedly. The spatial information from the CT scan was used to segment the region corresponding to BM from the PET scan using algorithms developed in-house, allowing for quantification of proliferating cells, and BM blood volume was estimated by measuring the changes in the T2 relaxation rates (ΔR2) collected from MR scans. RESULTS: (18)F-FLT PET/CT imaging differentiated irradiated from unirradiated BM regions. Two days after irradiation, proliferation of 1LS animals was significantly lower than sham (P = 0.0001, femurs; P < 0.0001, tibias) and returned to sham levels by day 10 (P = 0.6344, femurs; P = 0.3962, tibias). The degree of shielding affected proliferation recovery, showing an increase in the irradiated BM of the femurs, but not the tibias, of HBS animals when compared with 1LS (P = 0.0310, femurs; P = 0.5832, tibias). MRI of irradiated spines detected radiation-induced BM vascular damage, measured by the significant increase in ΔR2 2 d after whole-body irradiation (P = 0.0022) and HBS (P = 0.0003) with a decreasing trend of values, returning to levels close to baseline over 10 d. Our data were corroborated using γ-counting and histopathology. CONCLUSION: We demonstrated that (18)F-FLT PET/CT and USPIO MRI are valuable tools in mapping regional radiation exposure and the effects of radiation on BM. Analysis of the (18)F-FLT signal allowed for a clear demarcation of exposed BM regions and elucidated the kinetics of BM recovery, whereas USPIO MRI was used to assess vascular damage and recovery.


Assuntos
Doenças da Medula Óssea/diagnóstico por imagem , Doenças da Medula Óssea/patologia , Medula Óssea/patologia , Medula Óssea/efeitos da radiação , Didesoxinucleosídeos , Óxido Ferroso-Férrico , Lesões Experimentais por Radiação/diagnóstico por imagem , Lesões Experimentais por Radiação/patologia , Compostos Radiofarmacêuticos , Animais , Hemorragia/diagnóstico por imagem , Hemorragia/etiologia , Hemorragia/patologia , Imageamento por Ressonância Magnética , Magnetismo , Masculino , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Ratos , Ratos Sprague-Dawley , Tomografia Computadorizada por Raios X , Irradiação Corporal Total , Raios X
6.
Am J Physiol Lung Cell Mol Physiol ; 295(1): L54-60, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18487359

RESUMO

Restoration of lung homeostasis following injury requires efficient wound healing by the epithelium. The mechanisms of lung epithelial wound healing include cell spreading and migration into the wounded area and later cell proliferation. We hypothesized that mechanical properties of cells vary near the wound edge, and this may provide cues to direct cell migration. To investigate this hypothesis, we measured variations in the stiffness of migrating human bronchial epithelial cells (16HBE cells) approximately 2 h after applying a scratch wound. We used atomic force microscopy (AFM) in contact mode to measure the cell stiffness in 1.5-microm square regions at different locations relative to the wound edge. In regions far from the wound edge (>2.75 mm), there was substantial variation in the elastic modulus in specific cellular regions, but the median values measured from multiple fields were consistently lower than 5 kPa. At the wound edge, cell stiffness was significantly lower within the first 5 microm but increased significantly between 10 and 15 microm before decreasing again below the median values away from the wound edge. When cells were infected with an adenovirus expressing a dominant negative form of RhoA, cell stiffness was significantly decreased compared with cells infected with a control adenovirus. In addition, expression of dominant negative RhoA abrogated the peak increase in stiffness near the wound edge. These results suggest that cells near the wound edge undergo localized changes in cellular stiffness that may provide signals for cell spreading and migration.


Assuntos
Movimento Celular , Células Epiteliais/patologia , Microscopia de Força Atômica , Mucosa Respiratória/patologia , Cicatrização , Ferimentos e Lesões/patologia , Adenoviridae , Linhagem Celular , Movimento Celular/genética , Elasticidade , Células Epiteliais/enzimologia , Humanos , Mutação , Mucosa Respiratória/enzimologia , Cicatrização/genética , Ferimentos e Lesões/enzimologia , Ferimentos e Lesões/genética , Proteína rhoA de Ligação ao GTP/biossíntese , Proteína rhoA de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA