Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
AAPS PharmSciTech ; 25(2): 37, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355916

RESUMO

Hot-melt extrusion (HME) is a globally recognized, robust, effective technology that enhances the bioavailability of poorly soluble active pharmaceutical ingredients and offers an efficient continuous manufacturing process. The twin-screw extruder (TSE) offers an extremely resourceful customizable mixer that is used for continuous compounding and granulation by using different combinations of conveying elements, kneading elements (forward and reverse configuration), and distributive mixing elements. TSE is thus efficiently utilized for dry, wet, or melt granulation not only to manufacture dosage forms such as tablets, capsules, or granule-filled sachets, but also for designing novel formulations such as dry powder inhalers, drying units for granules, nanoextrusion, 3D printing, complexation, and amorphous solid dispersions. Over the past decades, combined academic and pharmaceutical industry collaborations have driven novel innovations for HME technology, which has resulted in a substantial increase in published articles and patents. This article summarizes the challenges and models for executing HME scale-up. Additionally, it covers the benefits of continuous manufacturing, process analytical technology (PAT) considerations, and regulatory requirements. In summary, this well-designed review builds upon our earlier publication, probing deeper into the potential of twin-screw extruders (TSE) for various new applications.


Assuntos
Química Farmacêutica , Tecnologia Farmacêutica , Composição de Medicamentos/métodos , Tecnologia Farmacêutica/métodos , Química Farmacêutica/métodos , Tecnologia de Extrusão por Fusão a Quente , Indústria Farmacêutica/métodos , Temperatura Alta
2.
Artigo em Inglês | MEDLINE | ID: mdl-36741268

RESUMO

Studies have shown that 40 individuals out of 100,000 are diagnosed with rheumatoid arthritis (RA) yearly, with a total of 1.3 million in the United States. Furthermore, the impact of RA in some cases can extend to cardiovascular diseases (CVD), as the studies showed that 84% of RA patients are at risk of developing hypertension. This study aims to design and develop different dosage forms (capsule-in-capsule and three-dimensional (3D) printed tablet) of nifedipine/indomethacin fixed-dose combination (FDC). The hot-melt extrusion (HME) was utilized alone and with fused deposition modeling (FDM) techniques The developed dosage forms were intended to provide delayed-extended and immediate release profiles for indomethacin and nifedipine, respectively. FDC dosage forms were successfully developed and characterized. Nifedipine formulations showed significant improvement in release profiles, having 94% of the drug release at 30 minutes compared with pure nifedipine, which had a percent release of 2%. Furthermore, the release of indomethacin was successfully delayed at a pH of 1.2 and extended at a pH of 6.8. Differential scanning calorimetry results showed endothermic crystalline peaks at 165 °C and 176 °C for indomethacin and nifedipine, respectively. Moreover, the thermal analysis of all formulations showed the absence of the endothermic peaks indicating complete solubilization of indomethacin and nifedipine in the polymeric carriers. All formulations had post-processing drug content in the range of 95% to 98%. Moreover, results from the stability study showed that all formulations were able to remain chemically and physically stable with no signs of recrystallization or degradation. The designed FDC dosage forms could improve the quality of life by enhancing patient compliance and preventing the need for polypharmacy.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37124158

RESUMO

Aqueous solubility is one of the key parameters for achieving the desired drug concentration in systemic circulation for better therapeutic outcomes. Carbamazepine (CBZ) is practically insoluble in water, is a BCS class II drug, and exhibits dissolution-dependent oral bioavailability. This study explored a novel application of hot-melt extrusion in the manufacture and development of a thermodynamically stable solid crystal suspension (SCS) to improve the solubility and dissolution rate of CBZ. The SCSs were prepared using sugar alcohols, such as mannitol or xylitol, as crystalline carriers. The drug-sugar blend was processed by hot melt extrusion up to 40 % (w/w) drug loading. The extruded SCS was evaluated for drug content, saturation solubility, differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), in vitro release, and stability studies. The physicochemical characterization revealed the highly crystalline existence of pure drug, pure carriers, and extruded SCS. FTIR analysis did not reveal any physical or chemical incompatibilities between the drug and sugar alcohols and showed a homogeneous CBZ distribution within respective crystalline carriers. The SEM micrographs of the solidified SCS revealed the presence of approximately 100 µm crystalline agglomerates. In vitro dissolution and solubility studies showed that the CBZ dissolution rate and solubility were improved significantly from both crystalline carriers for all tested drug loads. The SCSs showed no significant changes in drug content, in vitro release profiles, and thermal characteristics over 3 months of storage at accelerated stability conditions (40±2°C/75±5% RH). As a result, it can be inferred that the SCS strategy can be employed as a contemporary alternative technique to improve the dissolution rate of BCS class II drugs via HME technology.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37811318

RESUMO

Reports in the literature indicate that hot-melt extrusion (HME) processing techniques could alter the mechanical properties of the pharmaceutical physical blend, which may alter successful processing during tableting. The aim of this study was to evaluate whether HME processing conditions have an impact on the tabletability of Atorvastatin calcium trihydrate (ATR) in the presence of Neusilin® US2 (NUS2). ATR drug load of 25% was mixed with 75% of NUS2 and extruded using two screw configurations, screw speeds, and feed rates. Solid-state thermal analysis showed that ATR transformed to an amorphous form which led to improved solubility. ATR tabletability was affected positively by screw configuration that had no shearing and mixing force. SEM analysis indicated that a conveying screw configuration preserved the spherical nature of NUS2, thus improving ATR tabletability. This novel study demonstrates the significance of changing and monitoring the HME process parameters, which impact the materials' mechanical properties and may prevent adverse outcomes during tableting.

5.
AAPS PharmSciTech ; 24(2): 57, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759435

RESUMO

There has been a tremendous increase in the investigations of three-dimensional (3D) printing for biomedical and pharmaceutical applications, and drug delivery in particular, ever since the US FDA approved the first 3D printed medicine, SPRITAM® (levetiracetam) in 2015. Three-dimensional printing, also known as additive manufacturing, involves various manufacturing techniques like fused-deposition modeling, 3D inkjet, stereolithography, direct powder extrusion, and selective laser sintering, among other 3D printing techniques, which are based on the digitally controlled layer-by-layer deposition of materials to form various geometries of printlets. In contrast to conventional manufacturing methods, 3D printing technologies provide the unique and important opportunity for the fabrication of personalized dosage forms, which is an important aspect in addressing diverse patient medical needs. There is however the need to speed up the use of 3D printing in the biopharmaceutical industry and clinical settings, and this can be made possible through the integration of modern technologies like artificial intelligence, machine learning, and Internet of Things, into additive manufacturing. This will lead to less human involvement and expertise, independent, streamlined, and intelligent production of personalized medicines. Four-dimensional (4D) printing is another important additive manufacturing technique similar to 3D printing, but adds a 4th dimension defined as time, to the printing. This paper aims to give a detailed review of the applications and principles of operation of various 3D printing technologies in drug delivery, and the materials used in 3D printing, and highlight the challenges and opportunities of additive manufacturing, while introducing the concept of 4D printing and its pharmaceutical applications.


Assuntos
Inteligência Artificial , Tecnologia Farmacêutica , Humanos , Tecnologia Farmacêutica/métodos , Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas , Impressão Tridimensional
6.
AAPS PharmSciTech ; 24(8): 215, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857937

RESUMO

Implants are drug delivery platforms that consist of a drug-polymer matrix with the ability of providing a localized and efficient controlled release of the drug with minimal side effects and achievement of the desired therapeutic outcomes with low drug loadings. Direct powder extrusion (DPE) 3D printing technology involves the extrusion of material through a nozzle of the printer in the form of pellets or powder. The present study aimed at investigating the use of the CELLINK BIO X™ bioprinter using DPE 3D printing technique to fabricate and evaluate the impact of different shapes (cuboid, cylinder, and tube) of raloxifene hydrochloride (RFH)-loaded subdermal implants on the release of RFH from the implants. This study further evaluated the impact of different processing techniques, viz., hot-melt extrusion (HME) technology vs. DPE 3D printing technique, on the release of RFH from the implants fabricated by each processing technique. All the fabricated implants were characterized by XRD, DSC, SEM, and FTIR, and evaluated for their water uptake, mass loss, and in vitro RFH release. The current study successfully demonstrated a great opportunity of controlling and/or tuning the release of RFH from the subdermal implants by altering the implant shape, and hence surface area, and could be a great contribution and/or addition to the personalization of medicines and improvement of patient compliance.


Assuntos
Sistemas de Liberação de Medicamentos , Tecnologia Farmacêutica , Humanos , Tecnologia Farmacêutica/métodos , Pós , Sistemas de Liberação de Medicamentos/métodos , Polímeros , Impressão Tridimensional , Liberação Controlada de Fármacos , Comprimidos
7.
AAPS PharmSciTech ; 24(1): 47, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36703024

RESUMO

The current research is focused on investigating the suitability of the twin screw melt granulation (TSMG) approach for improving the solubility of a non-steroidal anti-inflammatory (NSAIDs) drug (ibuprofen), by developing granules using lipid surfactants. The solubility of the drug within the solid lipid excipients (Gelucire® 48/16 and Gelucire® 50/13) was determined by differential scanning calorimetry (DSC). The formulations were developed for drug and lipid ratios of 1:1.5, 1:3, and 1:4.5 using Neusilin® US2 as a solid adsorbent carrier. The solid-state properties of the drug investigated using differential scanning calorimetry (DSC) have revealed the conversion of the drug to an amorphous form for 1:3 and 1:4.5 ratios of formulations confirmed by powder x-ray diffraction analysis (PXRD). Drug-excipient compatibility and formation of no interactions were characterized using Fourier transform infrared spectroscopy (FTIR). The granules with a 1:3 and 1:4.5 ratios of drug and lipid have improved drug dissolution and permeation, attributing to the formation of micellar emulsions. The stability of formulation with a 1:3 ratio of drug and lipid surfactant was preserved when stored in accelerated conditions. However, the formulation with a 1:4.5 ratio of drug and lipid failed to retain the amorphous state evidenced by the recrystallization of the drug. This shows the suitability of TSMG as a single-step continuous manufacturing process for developing melt granules to improve the solubility of poorly water-soluble drug substances.


Assuntos
Anti-Inflamatórios não Esteroides , Ibuprofeno , Ibuprofeno/química , Solubilidade , Anti-Inflamatórios não Esteroides/química , Excipientes/química , Lipídeos , Permeabilidade , Composição de Medicamentos/métodos , Varredura Diferencial de Calorimetria , Difração de Raios X
8.
AAPS PharmSciTech ; 24(5): 107, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100926

RESUMO

The current study aimed to see the effects of poloxamer P407 on the dissolution performance of hydroxypropyl methylcellulose acetate succinate (AquaSolve™ HPMC-AS HG)-based amorphous solid dispersions (ASD). A weakly acidic, poorly water-soluble active pharmaceutical ingredient (API), mefenamic acid (MA), was selected as a model drug. Thermal investigations, including thermogravimetry (TG) and differential scanning calorimetry (DSC), were conducted for raw materials and physical mixtures as a part of the pre-formulation studies and later to characterize the extruded filaments. The API was blended with the polymers using a twin shell V-blender for 10 min and then extruded using an 11-mm twin-screw co-rotating extruder. Scanning electron microscopy (SEM) was used to study the morphology of the extruded filaments. Furthermore, Fourier-transform infrared spectroscopy (FT-IR) was performed to check the intermolecular interactions of the components. Finally, to assess the in vitro drug release of the ASDs, dissolution testing was conducted in phosphate buffer (0.1 M, pH 7.4) and hydrochloric acid-potassium chloride (HCl-KCl) buffer (0.1 M, pH 1.2). The DSC studies confirmed the formation of the ASDs, and the drug content of the extruded filaments was observed to be within an acceptable range. Furthermore, the study concluded that the formulations containing poloxamer P407 exhibited a significant increase in dissolution performance compared to the filaments with only HPMC-AS HG (at pH 7.4). In addition, the optimized formulation, F3, was stable for over 3 months when exposed to accelerated stability studies.


Assuntos
Química Farmacêutica , Poloxâmero , Solubilidade , Química Farmacêutica/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Temperatura Alta , Composição de Medicamentos/métodos , Varredura Diferencial de Calorimetria , Estabilidade de Medicamentos
9.
AAPS PharmSciTech ; 24(7): 203, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783961

RESUMO

The primary focus of the research is to study the role of cocrystal and amorphous solid dispersion approaches for enhancing solubility and preserving the stability of a poorly soluble drug, i.e., ibuprofen (IBP). First, the solvent-assisted grinding approach determined the optimum molar ratio of the drug and the coformer (nicotinamide (NIC)). Later, the polymeric filaments of cocrystals and amorphous solid dispersions were developed using the hot melt extrusion (HME) process, and the printlets were fabricated using the fused deposition modeling (FDM) additive manufacturing process. In addition, the obtained filaments were also milled and compressed into tablets as reference samples. The formation of cocrystals and amorphous solid dispersions was evaluated and confirmed using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and powder X-ray diffraction (PXRD) analysis. The drug release profiles of 3D printlets with 50% infill were found to be faster and are in line with the release profiles of compressed tablets. In addition, the 3D-printed cocrystal formulation was stable for 6 months at accelerated conditions. However, the 3D printlets of amorphous solid dispersions and compressed tablets failed to retain stability attributed to the recrystallization of the drug and loss in tablet mechanical properties. This shows the suitability of a cocrystal platform as a novel approach for developing stable formulations of poorly soluble drug substances over amorphous solid dispersions.


Assuntos
Tecnologia de Extrusão por Fusão a Quente , Ibuprofeno , Solubilidade , Tecnologia de Extrusão por Fusão a Quente/métodos , Liberação Controlada de Fármacos , Polímeros/química , Composição de Medicamentos/métodos , Comprimidos
10.
AAPS PharmSciTech ; 23(6): 169, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715519

RESUMO

Amorphous solid dispersion (ASD) has been well known as a potential strategy to improve the bioavailability and dissolution performance of poorly water-soluble drugs. The primary concern of this approach is the long-term stability of the amorphous drug in the solid dispersion. Accurate prediction and detection of the solubility and miscibility of drug in polymeric binary system will be a milestone to the development of ASDs. In this investigation, a method based on Flory-Huggins (F-H) theory was proposed to predict and calculate the solubility and miscibility of the drug in polymeric matrix and construct the phase diagram to identify the relevance between drug loading and temperature for ASDs development. Indomethacin (Indo) was chosen as the model drug, and polyvinyl pyrrolidone vinyl acetate (Kollidon® VA 64) was used as a polymeric carrier for the ASD systems. Physical mixtures were prepared with different drug loadings (10 to 90%) and analyzed by differential scanning calorimetry (DSC). The interaction parameter χ was calculated for physical mixtures by the melting point depression and solubility parameter contribution methods. The phase diagram was constructed to investigate the impact of other parameters like drug loading, processing temperature, and Gibbs free energy of mixing (ΔGmix). For further validation, formulations were developed using HME to verify the accuracy of the phase diagram and to guide in the hot-melt extrusion (HME) process design space and optimization.


Assuntos
Química Farmacêutica , Polímeros , Química Farmacêutica/métodos , Cristalização , Composição de Medicamentos/métodos , Estabilidade de Medicamentos , Polímeros/química , Povidona , Solubilidade , Termodinâmica
11.
AAPS PharmSciTech ; 23(1): 56, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35043282

RESUMO

Crystal engineering is an emerging tool for altering the physicochemical properties of drug candidates. The objective of the current investigation was to develop cocrystals of hydrochlorothiazide (HCT) with coformers such as nicotinamide (NIC), resorcinol (RSL), and catechol (CAT) using hot-melt extrusion (HME) technology. The liquid-assisted grinding (LAG) method was used to prepare cocrystals by grinding the drug and coformer in a definite molar ratio as a reference and to check the feasibility of cocrystal formation. Cocrystals were prepared using HME and evaluated with differential scanning calorimetry, Fourier transform infrared spectroscopy, X-ray diffractometry, and scanning electron microscopy and compared with LAG cocrystals. Barrel temperature was the critical process parameter for producing high-quality cocrystals in HME. All cocrystals exhibited improved solubility compared to the native drug, and HCT-NIC cocrystals showed a two-fold increase in solubility. Similarly, HCT-RSL and HCT-CAT showed higher solubility profiles and improved diffusion/permeability characteristics compared to that of the pure HCT due to the drug-coformer interactions in the cocrystals. In this study, the solubility of the coformer was the key factor determining cocrystal solubilization. However, hot-melt extrusion is an alternative technology for creating pharmaceutical cocrystals and has potential for industrial scale-up.


Assuntos
Hidroclorotiazida , Preparações Farmacêuticas , Varredura Diferencial de Calorimetria , Cristalização , Permeabilidade , Solubilidade
12.
AAPS PharmSciTech ; 23(6): 178, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761149

RESUMO

Physicochemical and formulation factors influencing penetration of drugs from topical products into the skin and mechanisms of drug permeation are well investigated and reported in the literature. However, mechanisms of drug absorption during short-term exposure have not been given sufficient importance. In this project, the extent of absorption of drug molecules into the skin from aqueous and ethanolic solutions following a 5-min application period was investigated. The experiments demonstrated measurable magnitude of absorption into the skin for all the molecules tested despite the duration of exposure being only few minutes. Among the two solvents used, absorption was greater from aqueous than ethanolic solution. The results suggest that an alternative penetration pathway, herein referred to as the convective transport pathway, is likely responsible for the rapid, significant uptake of drug molecules during initial few minutes of exposure. Additionally, absorption through the convective transport pathways is a function of the physicochemical nature of the formulation vehicle rather than the API.


Assuntos
Absorção Cutânea , Pele , Administração Cutânea , Transporte Biológico , Etanol , Excipientes/metabolismo , Pele/metabolismo , Solventes/química
13.
AAPS PharmSciTech ; 23(1): 63, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35091878

RESUMO

Efinaconazole is the first azole derivative approved by FDA for the topical treatment of onychomycosis. The objective of present study was to develop and validate HPLC method for estimation of efinaconazole in ex vivo human nail permeation study samples. The chromatographic analysis was performed on a HPLC system equipped with diode array detector. The efinaconazole and internal standard (IS) were extracted from the human nail samples by using the protein precipitation method. The samples were injected on to 5 µm Polar C18 100Å, 4.6 mm × 150 mm column. The mobile phase consisted of 0.01 M potassium dihydrogen phosphate: acetonitrile (36:64) and eluent was monitored at 205 nm. The chromatographic separation of drug and analyte was achieved using isocratic elution at flow rate of 1 mL/min with a total run time of 15 min. The efinaconazole and IS were eluted at 6.4 ± 0.5 and 8.3 ± 0.5 min, respectively. The developed method was validated as per FDA guidelines, and the results met with acceptance criteria. The method developed was specific, and the analyte concentrations were linear at range of 50 to 10000 ng/mL (R2 ≥ 0.9981). The validated HPLC method was applied for quantifying efinaconazole in human nail permeation study samples. The permeation of efinaconazole was increased by twofolds with Labarfac CC (15135.4 ± 2233.9 ng/cm2) compared to formulations containing Transcutol P (6892.0 ± 557.6 ng/cm2) and Labrasol (7266.1 ± 790.6 ng/cm2). The study results demonstrate that developed efinaconazole HPLC method can be employed for formulation evaluation and clinical studies.


Assuntos
Onicomicose , Triazóis , Cromatografia Líquida de Alta Pressão , Humanos , Unhas , Onicomicose/tratamento farmacológico
14.
AAPS PharmSciTech ; 24(1): 13, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36477554

RESUMO

The main objective of the current research was to investigate the effect of tablet shapes (heart-shaped and round tablets) and infill densities (50% and 100%) on the drug release profiles of 3D printed tablets prepared by hot-melt extrusion paired with fused deposition modeling techniques. Drug-loaded filaments of 1.5 mm and 2.5 mm diameters were extruded using a Process 11 mm hot-melt extruder employing atorvastatin calcium as a model drug and Kollicoat® IR, Kollidon® VA64, Kollidon® 12PF, and Kolliphor® P407 as hydrophilic polymers. Filaments of Kollicoat® IR in combination with Kollidon® VA64/Kollidon® 12PF has resulted in successful printing of immediate release tablets. The mechanical properties of drug-loaded filaments were evaluated using a 3-point bend test and stiffness test. The transformation of a crystalline drug to an amorphous form and the absence of drug-polymer interactions were confirmed by differential scanning calorimetry and Fourier transform infrared spectroscopy, respectively. The effect of infill density on drug release profiles was greater than that of tablet shape. The stability of 3D printed tablets was preserved even after storage under accelerated conditions (40 ± 2°C and 75 ± 5% RH) for 6 months. Thus, the 3D printing process of hot-melt extrusion paired with fused deposition modeling serves as an alternative manufacturing approach for developing patient-focused doses.


Assuntos
Atorvastatina , Humanos
15.
Artigo em Inglês | MEDLINE | ID: mdl-34306183

RESUMO

The aim of this study was to utilize a continuous process for the production of orally administered raloxifene hydrochloride (RX-HCl) loaded nanostructured lipid carrier (NLC) formulations for extended drug release using hot-melt extrusion (HME) technology coupled with probe sonication, and also to evaluate the in vitro characteristics of the prepared NLCs. Preparation of the NLCs using HME technology involved two main steps, first formation of a pre-emulsion after extrusion and then size reduction of the pre-emulsion using probe sonication to obtain the NLCs. A screw speed of 100 rpm and a barrel temperature of 85 °C, were used in the extrusion process. NLCs prepared by HME technology showed a lower particle size compared to those prepared by the conventional probe sonication method. The prepared NLCs had high entrapment efficiency values (>90 %). In vitro drug release was evaluated using dialysis bag diffusion technique and USP apparatus I. Overall, the RX-HCl loaded NLCs had a higher rate of drug release than the pure drug. The release profile for the F4-3 NLC formulations and pure drug at the beginning and end of the stability study were comparable. The particle size of the prepared NLCs remained stable over the storage period and all PDI and zeta potential values were ≤ 0.5 and in the range of -15 to -30 mV, respectively, indicating good physical stability of the formulations. In summary, HME technology and probe sonication were successfully used to prepare RX-HCl loaded NLC formulations with shorter processing times as compared to the conventional probe sonication method, which makes this technique a uniquely more industry-friendly method.

16.
Artigo em Inglês | MEDLINE | ID: mdl-33959199

RESUMO

Multicomponent crystalline solid forms (salts, cocrystals and eutectics) are a promising means of enhancing the dissolution behavior of poorly soluble drugs. The present study demonstrates the development of multicomponent solid forms of aripiprazole (ARP) prepared with succinic acid (SA) and nicotinamide (NA) as coformers using the hot melt extrusion (HME) technique. The HME-processed samples were characterized and analyzed using differential scanning calorimetry (DSC), hot stage microscopy (HSM), Fourier transform infrared (FTIR) spectroscopy, powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM). The DSC and HSM analyses revealed a characteristic single melting temperature in the solid forms, which differed from the melting points of the individual components. The discernible changes in the FTIR (amide C=O stretching) and PXRD results for ARP-SA confirm the formation of new crystalline solid forms. In the case of ARP-NA, these changes were less prominent, without the appearance or disappearance of peaks, suggesting no change in the crystal lattice. The SEM images demonstrated morphological differences between the HME-processed samples and the individual parent components. The in vitro dissolution and microenvironment pH measurement studies revealed that ARP-SA showed a higher dissolution rate, which could be due to the acidic microenvironment pH imparted by the coformer. The observations of the present study demonstrate the applicability of the HME technique for the development of ARP multicomponent solid forms.

17.
Artigo em Inglês | MEDLINE | ID: mdl-33717230

RESUMO

Enhancing the solubility of active drug ingredients is a major challenge faced by scientists and researchers. Different approaches have been explored for the enhancement of solubility and physicochemical properties of drugs, without affecting their stability or pharmacological activity. Among the various strategies available, pharmaceutical co-crystals, co-amorphous systems, and pharmaceutical salts as multicomponent systems (MCS) have gained interest to improve physicochemical properties of drugs. Development of MCS by conventional methods involves the utilization of excess amount of solvents, thus, making the product prone to instability, and may also cause harmful side effects in patients. Scale up is critical and involves the investment of huge capital and time. Lately, hot-melt extrusion has been utilized in the development of MCS to enhance solubility, bioavailability, stability, and physicochemical properties of the drugs. In this review, the authors discussed the development of different MCS produced via hot-melt extrusion technology. Specifically, approaches for screening of co-formers and co-crystals, selection of excipients for co-amorphous systems, pharmaceutical salts, and significance of MCS and process parameters affecting product quality are discussed.

18.
Artigo em Inglês | MEDLINE | ID: mdl-34552669

RESUMO

The aim of the current study was to investigate the dual effect of an amorphous solid dispersion generated by hot melt extrusion and the addition of pH modifiers on the solubility and stability of telmisartan. Hydroxypropyl methylcellulose acetate succinate L grade was used as a polymeric carrier and recrystallization inhibitor, and meglumine, sodium carbonate, or Neusilin S2 were incorporated as pH modifiers to generate a desirable microenvironmental pH in the solid dispersions. Differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy were incorporated to obtain the solid-state characterizations of telmisartan, and the results confirm a partial transformation of telmisartan to an amorphous state. An in vitro release study revealed that the transformation of telmisartan to an amorphous material improved its dissolution rate by 2-fold compared to pure drug and by up to 5-fold with the incorporation of pH modifiers. Results of the stability studies demonstrated that the samples have no significant degradation under accelerated stability conditions at 40 °C/75% RH.

19.
Artigo em Inglês | MEDLINE | ID: mdl-33717231

RESUMO

The objective of the current study was to develop theophylline (TPH) nicotinamide (NAM) pharmaceutical co-crystals using the hot melt extrusion (HME) technology and evaluate the processability of the co-crystals using different polymeric carriers. A physical mixture of 1:1 M ratio of TPH and NAM was employed to prepare the co-crystals. Hydroxypropylmethylcellulose acetate succinate, polyethylene oxide, and Kollidon® VA-64 (5% w/w) were investigated as polymeric carriers for the HME process. Solid-state characterization using differential scanning calorimetry showed two endothermal peaks, one at 126.4 °C indicating eutectic formation and another at 174 °C indicating the melting point of the co-crystal for all formulations, except the Kollidon® VA-64 extrudates, which showed a single peak at 174 °C. Fourier-transform infrared spectroscopy and powder X-ray diffraction studies revealed the formation of co-crystals. The feasibility to formulate the extrudates into solid dosage forms was assessed by formulating a tablet blend. The three-month stability studies showed no degradation at the accelerated stability conditions of 40 (±2) ° C and 75 (±5) % RH. Finally, the results demonstrated that the presence of mixing zones in screw configuration and extrusion temperature are critical processing parameters that influence co-crystal formation.

20.
AAPS PharmSciTech ; 22(3): 95, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686480

RESUMO

Vulvodynia is a chronic clinical condition associated with vulvar pain that can impair the sexual, social, and psychological life of women. There is a need for more research to develop novel strategies and therapies for the treatment of vulvodynia. Vulvodynia in experimental animal models induced via infections, allergens, and diabetes are tedious and with lessor induction rate. The objective of the study was to explore the possibility of inducing vulvodynia using a chemotherapeutic agent in a rodent model. Paclitaxel is commonly used in treating breast and ovarian cancer, whose dose-limiting side effect is peripheral neuropathy. Studies have shown that peripheral neuropathy is one of the etiologies for vulvodynia. Following paclitaxel administration (2 mg/kg i.p.), the intensity of vulvar hypersensitivity was assessed using a series of von Frey filaments (0.008 to 1 g) to ensure the induction of vulvodynia. Vulvodynia was induced from day 2 and was well sustained for 11 days. Furthermore, the induced vulvodynia was validated by investigating the potentiation of a flinch response threshold, upon topical application and systemic administration of gabapentin, a commonly used medication for treating neuropathic pain. The results demonstrate that vulvodynia was induced due to administration of paclitaxel. The fact that chemotherapeutic agent-induced vulvodynia was responsive to topical and parenterally administered gabapentin provides validity to the model. The study establishes a new, relatively simple and reliable animal model for screening drug molecules for vulvar hypersensitivity.


Assuntos
Antineoplásicos/efeitos adversos , Vulvodinia/induzido quimicamente , Analgésicos/uso terapêutico , Animais , Antineoplásicos Fitogênicos/efeitos adversos , Modelos Animais de Doenças , Feminino , Gabapentina/uso terapêutico , Neuralgia/induzido quimicamente , Neuralgia/psicologia , Paclitaxel/efeitos adversos , Medição da Dor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA