Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 652
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 171(3): 696-709.e23, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28965760

RESUMO

The transcription factor NRF2 is a master regulator of the cellular antioxidant response, and it is often genetically activated in non-small-cell lung cancers (NSCLCs) by, for instance, mutations in the negative regulator KEAP1. While direct pharmacological inhibition of NRF2 has proven challenging, its aberrant activation rewires biochemical networks in cancer cells that may create special vulnerabilities. Here, we use chemical proteomics to map druggable proteins that are selectively expressed in KEAP1-mutant NSCLC cells. Principal among these is NR0B1, an atypical orphan nuclear receptor that we show engages in a multimeric protein complex to regulate the transcriptional output of KEAP1-mutant NSCLC cells. We further identify small molecules that covalently target a conserved cysteine within the NR0B1 protein interaction domain, and we demonstrate that these compounds disrupt NR0B1 complexes and impair the anchorage-independent growth of KEAP1-mutant cancer cells. Our findings designate NR0B1 as a druggable transcriptional regulator that supports NRF2-dependent lung cancers.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/química , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/química , Neoplasias Pulmonares/genética , Proteoma/análise , Transcriptoma , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Cisteína/metabolismo , Receptor Nuclear Órfão DAX-1/metabolismo , Redes Reguladoras de Genes , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Ligantes , Neoplasias Pulmonares/metabolismo
2.
Cell ; 165(5): 1209-1223, 2016 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-27133168

RESUMO

Across eukaryotic species, mild mitochondrial stress can have beneficial effects on the lifespan of organisms. Mitochondrial dysfunction activates an unfolded protein response (UPR(mt)), a stress signaling mechanism designed to ensure mitochondrial homeostasis. Perturbation of mitochondria during larval development in C. elegans not only delays aging but also maintains UPR(mt) signaling, suggesting an epigenetic mechanism that modulates both longevity and mitochondrial proteostasis throughout life. We identify the conserved histone lysine demethylases jmjd-1.2/PHF8 and jmjd-3.1/JMJD3 as positive regulators of lifespan in response to mitochondrial dysfunction across species. Reduction of function of the demethylases potently suppresses longevity and UPR(mt) induction, while gain of function is sufficient to extend lifespan in a UPR(mt)-dependent manner. A systems genetics approach in the BXD mouse reference population further indicates conserved roles of the mammalian orthologs in longevity and UPR(mt) signaling. These findings illustrate an evolutionary conserved epigenetic mechanism that determines the rate of aging downstream of mitochondrial perturbations.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Histona Desmetilases/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Animais , Caenorhabditis elegans/genética , Longevidade , Camundongos , Mitocôndrias/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Resposta a Proteínas não Dobradas
3.
Nat Rev Mol Cell Biol ; 19(2): 121-135, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28974774

RESUMO

Cells constantly adapt their metabolism to meet their energy needs and respond to nutrient availability. Eukaryotes have evolved a very sophisticated system to sense low cellular ATP levels via the serine/threonine kinase AMP-activated protein kinase (AMPK) complex. Under conditions of low energy, AMPK phosphorylates specific enzymes and growth control nodes to increase ATP generation and decrease ATP consumption. In the past decade, the discovery of numerous new AMPK substrates has led to a more complete understanding of the minimal number of steps required to reprogramme cellular metabolism from anabolism to catabolism. This energy switch controls cell growth and several other cellular processes, including lipid and glucose metabolism and autophagy. Recent studies have revealed that one ancestral function of AMPK is to promote mitochondrial health, and multiple newly discovered targets of AMPK are involved in various aspects of mitochondrial homeostasis, including mitophagy. This Review discusses how AMPK functions as a central mediator of the cellular response to energetic stress and mitochondrial insults and coordinates multiple features of autophagy and mitochondrial biology.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/fisiologia , Mitocôndrias/metabolismo , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/fisiologia , Animais , Autofagia , Metabolismo Energético , Homeostase , Humanos , Mitocôndrias/fisiologia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo
4.
Mol Cell ; 81(18): 3677-3690, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34547233

RESUMO

The evolution of AMPK and its homologs enabled exquisite responsivity and control of cellular energetic homeostasis. Recent work has been critical in establishing the mechanisms that determine AMPK activity, novel targets of AMPK action, and the distribution of AMPK-mediated control networks across the cellular landscape. The role of AMPK as a hub of metabolic control has led to intense interest in pharmacologic activation as a therapeutic avenue for a number of disease states, including obesity, diabetes, and cancer. As such, critical work on the compartmentalization of AMPK, its downstream targets, and the systems it influences has progressed in recent years. The variegated distribution of AMPK-mediated control of metabolic homeostasis has revealed key insights into AMPK in normal biology and future directions for AMPK-based therapeutic strategies.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Citoplasma/metabolismo , Metabolismo Energético , Homeostase , Humanos , Mitocôndrias/metabolismo , Domínios Proteicos , Transdução de Sinais , Relação Estrutura-Atividade
5.
Genes Dev ; 34(19-20): 1330-1344, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32912901

RESUMO

Despite being the frontline therapy for type 2 diabetes, the mechanisms of action of the biguanide drug metformin are still being discovered. In particular, the detailed molecular interplays between the AMPK and the mTORC1 pathway in the hepatic benefits of metformin are still ill defined. Metformin-dependent activation of AMPK classically inhibits mTORC1 via TSC/RHEB, but several lines of evidence suggest additional mechanisms at play in metformin inhibition of mTORC1. Here we investigated the role of direct AMPK-mediated serine phosphorylation of RAPTOR in a new RaptorAA mouse model, in which AMPK phospho-serine sites Ser722 and Ser792 of RAPTOR were mutated to alanine. Metformin treatment of primary hepatocytes and intact murine liver requires AMPK regulation of both RAPTOR and TSC2 to fully inhibit mTORC1, and this regulation is critical for both the translational and transcriptional response to metformin. Transcriptionally, AMPK and mTORC1 were both important for regulation of anabolic metabolism and inflammatory programs triggered by metformin treatment. The hepatic transcriptional response in mice on high-fat diet treated with metformin was largely ablated by AMPK deficiency under the conditions examined, indicating the essential role of this kinase and its targets in metformin action in vivo.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Metformina/farmacologia , Proteína Regulatória Associada a mTOR/genética , Transdução de Sinais/efeitos dos fármacos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Genótipo , Hipoglicemiantes/farmacologia , Inflamação , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metabolismo/efeitos dos fármacos , Metformina/uso terapêutico , Camundongos , Fosforilação/efeitos dos fármacos , Proteína Regulatória Associada a mTOR/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
6.
Cell ; 145(4): 596-606, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21565616

RESUMO

Under fasting conditions, metazoans maintain energy balance by shifting from glucose to fat burning. In the fasted state, SIRT1 promotes catabolic gene expression by deacetylating the forkhead factor FOXO in response to stress and nutrient deprivation. The mechanisms by which hormonal signals regulate FOXO deacetylation remain unclear, however. We identified a hormone-dependent module, consisting of the Ser/Thr kinase SIK3 and the class IIa deacetylase HDAC4, which regulates FOXO activity in Drosophila. During feeding, HDAC4 is phosphorylated and sequestered in the cytoplasm by SIK3, whose activity is upregulated in response to insulin. SIK3 is inactivated during fasting, leading to the dephosphorylation and nuclear translocation of HDAC4 and to FOXO deacetylation. SIK3 mutant flies are starvation sensitive, reflecting FOXO-dependent increases in lipolysis that deplete triglyceride stores; reducing HDAC4 expression restored lipid accumulation. Our results reveal a hormone-regulated pathway that functions in parallel with the nutrient-sensing SIRT1 pathway to maintain energy balance.


Assuntos
Drosophila melanogaster/metabolismo , Metabolismo Energético , Insulina/metabolismo , Transdução de Sinais , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ingestão de Alimentos , Fatores de Transcrição Forkhead/metabolismo , Histona Desacetilases/metabolismo , Lipase/metabolismo , Metabolismo dos Lipídeos , Camundongos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Triglicerídeos/metabolismo
7.
Cell ; 145(4): 607-21, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21565617

RESUMO

Class IIa histone deacetylases (HDACs) are signal-dependent modulators of transcription with established roles in muscle differentiation and neuronal survival. We show here that in liver, class IIa HDACs (HDAC4, 5, and 7) are phosphorylated and excluded from the nucleus by AMPK family kinases. In response to the fasting hormone glucagon, class IIa HDACs are rapidly dephosphorylated and translocated to the nucleus where they associate with the promoters of gluconeogenic enzymes such as G6Pase. In turn, HDAC4/5 recruit HDAC3, which results in the acute transcriptional induction of these genes via deacetylation and activation of FOXO family transcription factors. Loss of class IIa HDACs in murine liver results in inhibition of FOXO target genes and lowers blood glucose, resulting in increased glycogen storage. Finally, suppression of class IIa HDACs in mouse models of type 2 diabetes ameliorates hyperglycemia, suggesting that inhibitors of class I/II HDACs may be potential therapeutics for metabolic syndrome.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Glucose/metabolismo , Histona Desacetilases/metabolismo , Proteínas Quinases Ativadas por AMP , Acetilação , Animais , Núcleo Celular/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteína Forkhead Box O1 , Glucagon/metabolismo , Gluconeogênese , Homeostase , Camundongos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
8.
Nucleic Acids Res ; 52(3): 1090-1106, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38055834

RESUMO

Exonic sequences contain both protein-coding and RNA splicing information but the interplay of the protein and splicing code is complex and poorly understood. Here, we have studied traditional and auxiliary splicing codes of human exons that encode residues coordinating two essential divalent metals at the opposite ends of the Irving-Williams series, a universal order of relative stabilities of metal-organic complexes. We show that exons encoding Zn2+-coordinating amino acids are supported much less by the auxiliary splicing motifs than exons coordinating Ca2+. The handicap of the former is compensated by stronger splice sites and uridine-richer polypyrimidine tracts, except for position -3 relative to 3' splice junctions. However, both Ca2+ and Zn2+ exons exhibit close-to-constitutive splicing in multiple tissues, consistent with their critical importance for metalloprotein function and a relatively small fraction of expendable, alternatively spliced exons. These results indicate that constraints imposed by metal coordination spheres on RNA splicing have been efficiently overcome by the plasticity of exon-intron architecture to ensure adequate metalloprotein expression.


Assuntos
Cálcio , Metaloproteínas , Splicing de RNA , Zinco , Humanos , Processamento Alternativo , Éxons , Íntrons , Metaloproteínas/genética , Sítios de Splice de RNA
9.
Proc Natl Acad Sci U S A ; 120(26): e2221549120, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339230

RESUMO

Cytochromes P450 (CYPs) are heme-thiolate monooxygenases that prototypically catalyze the insertion of oxygen into unactivated C-H bonds but are capable of mediating more complex reactions. One of the most remarked-upon alternative reactions occurs during biosynthesis of the gibberellin A (GA) phytohormones, involving hydrocarbon ring contraction with coupled aldehyde extrusion of ent-kaurenoic acid to form the first gibberellin intermediate. While the unusual nature of this reaction has long been noted, its mechanistic basis has remained opaque. Building on identification of the relevant CYP114 from bacterial GA biosynthesis, detailed structure-function studies are reported here, including development of in vitro assays as well as crystallographic analyses both in the absence and presence of substrate. These structures provided insight into enzymatic catalysis of this unusual reaction, as exemplified by identification of a key role for the "missing" acid from an otherwise highly conserved acid-alcohol pair of residues. Notably, the results demonstrate that ring contraction requires dual factors, both the use of a dedicated ferredoxin and absence of the otherwise conserved acidic residue, with exclusion of either limiting turnover to just the initiating and more straightforward hydroxylation. The results provide detailed insight into the enzymatic structure-function relationships underlying this fascinating reaction and support the use of a semipinacol mechanism for the unusual ring contraction reaction.


Assuntos
Giberelinas , Reguladores de Crescimento de Plantas , Sistema Enzimático do Citocromo P-450/química , Bactérias , Catálise
10.
Nature ; 565(7741): 659-663, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30675059

RESUMO

Replicative crisis is a senescence-independent process that acts as a final barrier against oncogenic transformation by eliminating pre-cancerous cells with disrupted cell cycle checkpoints1. It functions as a potent tumour suppressor and culminates in extensive cell death. Cells rarely evade elimination and evolve towards malignancy, but the mechanisms that underlie cell death in crisis are not well understood. Here we show that macroautophagy has a dominant role in the death of fibroblasts and epithelial cells during crisis. Activation of autophagy is critical for cell death, as its suppression promoted bypass of crisis, continued proliferation and accumulation of genome instability. Telomere dysfunction specifically triggers autophagy, implicating a telomere-driven autophagy pathway that is not induced by intrachromosomal breaks. Telomeric DNA damage generates cytosolic DNA species with fragile nuclear envelopes that undergo spontaneous disruption. The cytosolic chromatin fragments activate the cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) pathway and engage the autophagy machinery. Our data suggest that autophagy is an integral component of the tumour suppressive crisis mechanism and that loss of autophagy function is required for the initiation of cancer.


Assuntos
Autofagia , Carcinogênese/genética , Carcinogênese/patologia , Proliferação de Células , Instabilidade Cromossômica , Autofagia/genética , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Cromatina/patologia , Instabilidade Cromossômica/genética , Dano ao DNA/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Proteínas de Membrana/metabolismo , Membrana Nuclear/patologia , Nucleotidiltransferases/metabolismo , Telômero/genética , Telômero/patologia
11.
Mol Cell ; 66(6): 789-800, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28622524

RESUMO

AMPK is a highly conserved master regulator of metabolism, which restores energy balance during metabolic stress both at the cellular and physiological levels. The identification of numerous AMPK targets has helped explain how AMPK restores energy homeostasis. Recent advancements illustrate novel mechanisms of AMPK regulation, including changes in subcellular localization and phosphorylation by non-canonical upstream kinases. Notably, the therapeutic potential of AMPK is widely recognized and heavily pursued for treatment of metabolic diseases such as diabetes, but also obesity, inflammation, and cancer. Moreover, the recently solved crystal structure of AMPK has shed light both into how nucleotides activate AMPK and, importantly, also into the sites bound by small molecule activators, thus providing a path for improved drugs.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético , Transdução de Sinais , Proteínas Quinases Ativadas por AMP/química , Animais , Autofagia , Metabolismo Energético/efeitos dos fármacos , Ativação Enzimática , Ativadores de Enzimas/uso terapêutico , Humanos , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/enzimologia , Doenças Metabólicas/patologia , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Mitofagia , Modelos Moleculares , Fosforilação , Conformação Proteica , Proteólise , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(15): e2100361119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35394876

RESUMO

As a midsized gene family conserved more by lineage than function, the typical plant terpene synthases (TPSs) could be a valuable tool to examine plant evolution. TPSs are pivotal in biosynthesis of gibberellins and related phytohormones as well as in formation of the extensive arsenal of specialized plant metabolites mediating ecological interactions whose production is often lineage specific. Yet the origin and early evolution of the TPS family is not well understood. Systematic analysis of an array of transcriptomes and sequenced genomes indicated that the TPS family originated after the divergence of land plants from charophytic algae. Phylogenetic and biochemical analyses support the hypothesis that the ancestral TPS gene encoded a bifunctional class I and II diterpene synthase producing the ent-kaurene required for phytohormone production in all extant lineages of land plants. Moreover, the ancestral TPS gene likely underwent duplication at least twice early in land plant evolution. Together these two gave rise to three TPS lineages leading to the extant TPS-c, TPS-e/f, and the remaining TPS (h/d/a/b/g) subfamilies, with the latter dedicated to secondary rather than primary metabolism while the former two contain those genes involved in ent-kaurene production. Nevertheless, parallel evolution from the ent-kaurene­producing class I and class II diterpene synthases has led to roles for TPS-e/f and -c subfamily members in secondary metabolism as well. These results clarify TPS evolutionary history and provide context for the role of these genes in producing the vast diversity of terpenoid natural products observed today in various land plant lineages.


Assuntos
Alquil e Aril Transferases , Embriófitas , Evolução Molecular , Proteínas de Plantas , Alquil e Aril Transferases/classificação , Alquil e Aril Transferases/genética , Embriófitas/enzimologia , Embriófitas/genética , Duplicação Gênica , Filogenia , Reguladores de Crescimento de Plantas , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Terpenos/metabolismo
13.
Plant Cell ; 33(2): 290-305, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33793769

RESUMO

Plants can contain biosynthetic gene clusters (BGCs) that nominally resemble those found in microbes. However, while horizontal gene transmission is often observed in microbes, plants are limited to vertical gene transmission, implying that their BGCs may exhibit distinct inheritance patterns. Rice (Oryza sativa) contains two unlinked BGCs involved in diterpenoid phytoalexin metabolism, with one clearly required for momilactone biosynthesis, while the other is associated with production of phytocassanes. Here, in the process of elucidating momilactone biosynthesis, genetic evidence was found demonstrating a role for a cytochrome P450 (CYP) from the other "phytocassane" BGC. This CYP76M8 acts after the CYP99A2/3 from the "momilactone" BGC, producing a hemiacetal intermediate that is oxidized to the eponymous lactone by a short-chain alcohol dehydrogenase also from this BGC. Thus, the "momilactone" BGC is not only incomplete, but also fractured by the need for CYP76M8 to act in between steps catalyzed by enzymes from this BGC. Moreover, as supported by similar activity observed with orthologs from the momilactone-producing wild-rice species Oryza punctata, the presence of CYP76M8 in the other "phytocassane" BGC indicates interdependent evolution of these two BGCs, highlighting the distinct nature of BGC assembly in plants.


Assuntos
Evolução Biológica , Vias Biossintéticas/genética , Diterpenos/metabolismo , Família Multigênica , Oryza/genética , Diterpenos/química , Regulação da Expressão Gênica de Plantas , Oxirredução , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Langmuir ; 40(6): 2872-2882, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38306705

RESUMO

Aluminum alloys are used in advanced engineering applications as they possess a combination of favorable properties, including high strength, lightweightness, good corrosion resistance, machineability, and recyclability. Such applications often require forming the sheets into the final components, which is typically aided by an oil-based lubricant, followed by joining them using adhesives, which is hampered by residual lubricant. In this work, aluminum surfaces were modified with different self-assembled monolayers (SAMs), with the goal of significantly reducing the amount of lubricant while simultaneously improving friction properties, forming, and bonding performance. Our results show that SAMs terminated with hydrophilic and nucleophilic end groups give rise to high-energy surfaces with wetting properties that are stable over time. These surfaces showed significantly improved surface wetting by the lubricant, which in turn resulted in an improved forming performance at reduced lubricant coat weights. Moreover, the nucleophilic SAM termination provided outstanding performance in adhesive bonding tests under corrosive conditions.

15.
Nucleic Acids Res ; 50(10): 5493-5512, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35474482

RESUMO

Auxilliary splicing sequences in exons, known as enhancers (ESEs) and silencers (ESSs), have been subject to strong selection pressures at the RNA and protein level. The protein component of this splicing code is substantial, recently estimated at ∼50% of the total information within ESEs, but remains poorly understood. The ESE/ESS profiles were previously associated with the Irving-Williams (I-W) stability series for divalent metals, suggesting that the ESE/ESS evolution was shaped by metal binding sites. Here, we have examined splicing activities of exonic sequences that encode protein binding sites for Ca2+, a weak binder in the I-W affinity order. We found that predicted exon inclusion levels for the EF-hand motifs and for Ca2+-binding residues in nonEF-hand proteins were higher than for average exons. For canonical EF-hands, the increase was centred on the EF-hand chelation loop and, in particular, on Ca2+-coordinating residues, with a 1>12>3∼5>9 hierarchy in the 12-codon loop consensus and usage bias at codons 1 and 12. The same hierarchy but a lower increase was observed for noncanonical EF-hands, except for S100 proteins. EF-hand loops preferentially accumulated exon splits in two clusters, one located in their N-terminal halves and the other around codon 12. Using splicing assays and published crosslinking and immunoprecipitation data, we identify candidate trans-acting factors that preferentially bind conserved GA-rich motifs encoding negatively charged amino acids in the loops. Together, these data provide evidence for the high capacity of codons for Ca2+-coordinating residues to be retained in mature transcripts, facilitating their exon-level expansion during eukaryotic evolution.


Assuntos
Cálcio , Splicing de RNA , Processamento Alternativo , Sítios de Ligação/genética , Códon , Éxons , Ligação Proteica
16.
Genes Dev ; 30(5): 535-52, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26944679

RESUMO

Faithful execution of developmental programs relies on the acquisition of unique cell identities from pluripotent progenitors, a process governed by combinatorial inputs from numerous signaling cascades that ultimately dictate lineage-specific transcriptional outputs. Despite growing evidence that metabolism is integrated with many molecular networks, how pathways that control energy homeostasis may affect cell fate decisions is largely unknown. Here, we show that AMP-activated protein kinase (AMPK), a central metabolic regulator, plays critical roles in lineage specification. Although AMPK-deficient embryonic stem cells (ESCs) were normal in the pluripotent state, these cells displayed profound defects upon differentiation, failing to generate chimeric embryos and preferentially adopting an ectodermal fate at the expense of the endoderm during embryoid body (EB) formation. AMPK(-/-) EBs exhibited reduced levels of Tfeb, a master transcriptional regulator of lysosomes, leading to diminished endolysosomal function. Remarkably, genetic loss of Tfeb also yielded endodermal defects, while AMPK-null ESCs overexpressing this transcription factor normalized their differential potential, revealing an intimate connection between Tfeb/lysosomes and germ layer specification. The compromised endolysosomal system resulting from AMPK or Tfeb inactivation blunted Wnt signaling, while up-regulating this pathway restored expression of endodermal markers. Collectively, these results uncover the AMPK pathway as a novel regulator of cell fate determination during differentiation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Diferenciação Celular , Linhagem da Célula/genética , Regulação da Expressão Gênica no Desenvolvimento , Lisossomos/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Células-Tronco Embrionárias , Endoderma/patologia , Camundongos , Mutação , Transdução de Sinais/genética , Via de Sinalização Wnt/genética
17.
Nat Prod Rep ; 40(2): 452-469, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36472136

RESUMO

Covering: up to 2014-2022.Diterpenoid biosynthesis in plants builds on the necessary production of (E,E,E)-geranylgeranyl diphosphate (GGPP) for photosynthetic pigment production, with diterpenoid biosynthesis arising very early in land plant evolution, enabling stockpiling of the extensive arsenal of (di)terpenoid natural products currently observed in this kingdom. This review will build upon that previously published in the Annual Review of Plant Biology, with a stronger focus on enzyme structure-function relationships, as well as additional insights into the evolution of (di)terpenoid metabolism since generated.


Assuntos
Diterpenos , Terpenos , Terpenos/metabolismo , Plantas/metabolismo , Diterpenos/metabolismo , Hormônios/metabolismo
18.
Plant Physiol ; 189(1): 99-111, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35157086

RESUMO

Spiro-9,13-epoxy-labdane diterpenoids are commonly found in Leonurus species, particularly in Leonurus japonicus Houtt., which is a medicinal herb of long-standing use in Asia and in which such spiro-heterocycles are present in at least 38 diterpenoids. Here, through generation of a transcriptome and functional characterization of six diterpene synthases (diTPSs) from L. japonicus, including three class II diTPSs (LjTPS1, LjTPS3, and LjTPS4) and three class I diTPSs (LjTPS5, LjTPS6, and LjTPS7), formation of the spiro-9,13-epoxy-labdane backbone was elucidated, along with identification of the relevant diTPSs for production of other labdane-related diterpenes. Similar to what has been found with diTPSs from other plant species, while LjTPS3 specifically produces the carbon-9 (C9) hydroxylated bicycle peregrinol diphosphate (PPP), the subsequently acting LjTPS6 yields a mixture of four products, largely labda-13(16),14-dien-9-ol, but with substantial amounts of viteagnusin D and the C13-S/R epimers of 9,13-epoxy-labda-14-ene. Notably, structure-function analysis identified a critical residue in LjTPS6 (I420) in which single site mutations enable specific production of the 13S epimer. Indeed, extensive mutagenesis demonstrated that LjTPS6:I420G reacts with PPP to both specifically and efficiently produce 9,13S-epoxy-labda-14-ene, providing a specialized synthase for further investigation of derived diterpenoid biosynthesis. The results reported here provide a strong foundation for future studies of the intriguing spiro-9,13-epoxy-labdane diterpenoid metabolism found in L. japonicus.


Assuntos
Alquil e Aril Transferases , Diterpenos , Leonurus , Plantas Medicinais , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Diterpenos/metabolismo , Leonurus/metabolismo , Transcriptoma
19.
Nat Rev Mol Cell Biol ; 12(10): 669-74, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21941276

RESUMO

Nature Reviews Molecular Cell Biology celebrated its 10-year anniversary during this past year with a series of specially commissioned articles. To complement this, here we have asked researchers from across the field for their insights into how molecular cell biology research has evolved during this past decade, the key concepts that have emerged and the most promising interfaces that have developed. Their comments highlight the broad impact that particular advances have had, some of the basic understanding that we still require, and the collaborative approaches that will be essential for driving the field forward.


Assuntos
Biologia Celular/história , Biologia Molecular/história , Biologia Molecular/tendências , Biologia Celular/tendências , História do Século XX , História do Século XXI , Biologia Molecular/métodos
20.
Cell ; 134(3): 405-15, 2008 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-18674809

RESUMO

The benefits of endurance exercise on general health make it desirable to identify orally active agents that would mimic or potentiate the effects of exercise to treat metabolic diseases. Although certain natural compounds, such as reseveratrol, have endurance-enhancing activities, their exact metabolic targets remain elusive. We therefore tested the effect of pathway-specific drugs on endurance capacities of mice in a treadmill running test. We found that PPARbeta/delta agonist and exercise training synergistically increase oxidative myofibers and running endurance in adult mice. Because training activates AMPK and PGC1alpha, we then tested whether the orally active AMPK agonist AICAR might be sufficient to overcome the exercise requirement. Unexpectedly, even in sedentary mice, 4 weeks of AICAR treatment alone induced metabolic genes and enhanced running endurance by 44%. These results demonstrate that AMPK-PPARdelta pathway can be targeted by orally active drugs to enhance training adaptation or even to increase endurance without exercise.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Complexos Multienzimáticos/metabolismo , Músculo Esquelético/metabolismo , PPAR delta/agonistas , Resistência Física/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Ribonucleotídeos/farmacologia , Tiazóis/farmacologia , Proteínas Quinases Ativadas por AMP , Administração Oral , Aminoimidazol Carboxamida/administração & dosagem , Aminoimidazol Carboxamida/farmacologia , Animais , Biomimética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Condicionamento Físico Animal , Ribonucleotídeos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA