Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circulation ; 147(2): 142-153, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36382596

RESUMO

BACKGROUND: Identifying genetic variants that affect the level of cell cycle reentry and establishing the degree of cell cycle progression in those variants could help guide development of therapeutic interventions aimed at effecting cardiac regeneration. We observed that C57Bl6/NCR (B6N) mice have a marked increase in cardiomyocyte S-phase activity after permanent coronary artery ligation compared with infarcted DBA/2J (D2J) mice. METHODS: Cardiomyocyte cell cycle activity after infarction was monitored in D2J, (D2J×B6N)-F1, and (D2J×B6N)-F1×D2J backcross mice by means of bromodeoxyuridine or 5-ethynyl-2'-deoxyuridine incorporation using a nuclear-localized transgenic reporter to identify cardiomyocyte nuclei. Genome-wide quantitative trait locus analysis, fine scale genetic mapping, whole exome sequencing, and RNA sequencing analyses of the backcross mice were performed to identify the gene responsible for the elevated cardiomyocyte S-phase phenotype. RESULTS: (D2J×B6N)-F1 mice exhibited a 14-fold increase in cardiomyocyte S-phase activity in ventricular regions remote from infarct scar compared with D2J mice (0.798±0.09% versus 0.056±0.004%; P<0.001). Quantitative trait locus analysis of (D2J×B6N)-F1×D2J backcross mice revealed that the gene responsible for differential S-phase activity was located on the distal arm of chromosome 3 (logarithm of the odds score=6.38; P<0.001). Additional genetic and molecular analyses identified 3 potential candidates. Of these, Tnni3k (troponin I-interacting kinase) is expressed in B6N hearts but not in D2J hearts. Transgenic expression of TNNI3K in a D2J genetic background results in elevated cardiomyocyte S-phase activity after injury. Cardiomyocyte S-phase activity in both Tnni3k-expressing and Tnni3k-nonexpressing mice results in the formation of polyploid nuclei. CONCLUSIONS: These data indicate that Tnni3k expression increases the level of cardiomyocyte S-phase activity after injury.


Assuntos
Miócitos Cardíacos , Troponina I , Camundongos , Animais , Troponina I/metabolismo , Camundongos Endogâmicos DBA , Miócitos Cardíacos/metabolismo , Ciclo Celular , Proliferação de Células , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
2.
J Mol Cell Cardiol ; 182: 86-91, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37517369

RESUMO

Although the myocardial renewal rate in the adult mammalian heart is quite low, recent studies have identified genetic variants which can impact the degree of cardiomyocyte cell cycle reentry. Here we use the compound interest law to model the level of regenerative growth over time in mice exhibiting different rates of cardiomyocyte cell cycle reentry following myocardial injury. The modeling suggests that the limited ability of S-phase adult cardiomyocytes to progress through cytokinesis, rather than the ability to reenter the cell cycle per se, is a major contributor to the low levels of intrinsic regenerative growth in the adult myocardium.


Assuntos
Traumatismos Cardíacos , Miócitos Cardíacos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Miocárdio/metabolismo , Coração , Ciclo Celular , Traumatismos Cardíacos/metabolismo , Citocinese , Proliferação de Células , Mamíferos
3.
Circulation ; 122(10): 993-1003, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20733099

RESUMO

BACKGROUND: Hemodynamic load regulates myocardial function and gene expression. We tested the hypothesis that afterload and preload, despite similar average load, result in different phenotypes. METHODS AND RESULTS: Afterload and preload were compared in mice with transverse aortic constriction (TAC) and aortocaval shunt (shunt). Compared with sham mice, 6 hours after surgery, systolic wall stress (afterload) was increased in TAC mice (+40%; P<0.05), diastolic wall stress (preload) was increased in shunt (+277%; P<0.05) and TAC mice (+74%; P<0.05), and mean total wall stress was similarly increased in TAC (69%) and shunt mice (67%) (P=NS, TAC versus shunt; each P<0.05 versus sham). At 1 week, left ventricular weight/tibia length was significantly increased by 22% in TAC and 29% in shunt mice (P=NS, TAC versus shunt). After 24 hours and 1 week, calcium/calmodulin-dependent protein kinase II signaling was increased in TAC. This resulted in altered calcium cycling, including increased L-type calcium current, calcium transients, fractional sarcoplasmic reticulum calcium release, and calcium spark frequency. In shunt mice, Akt phosphorylation was increased. TAC was associated with inflammation, fibrosis, and cardiomyocyte apoptosis. The latter was significantly reduced in calcium/calmodulin-dependent protein kinase IIdelta-knockout TAC mice. A total of 157 mRNAs and 13 microRNAs were differentially regulated in TAC versus shunt mice. After 8 weeks, fractional shortening was lower and mortality was higher in TAC versus shunt mice. CONCLUSIONS: Afterload results in maladaptive fibrotic hypertrophy with calcium/calmodulin-dependent protein kinase II-dependent altered calcium cycling and apoptosis. Preload is associated with Akt activation without fibrosis, little apoptosis, better function, and lower mortality. This indicates that different loads result in distinct phenotype differences that may require specific pharmacological interventions.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Hemodinâmica/fisiologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Remodelação Ventricular/fisiologia , Animais , Aorta/fisiopatologia , Apoptose/fisiologia , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Modelos Animais de Doenças , Feminino , Fibrose , Estudo de Associação Genômica Ampla , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/mortalidade , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/mortalidade , Camundongos , Camundongos Knockout , MicroRNAs/fisiologia , Miocárdio/patologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Transdução de Sinais/fisiologia
4.
Cardiovasc Res ; 114(3): 389-400, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29016731

RESUMO

AIMS: Recent studies have demonstrated electrotonic coupling between scar tissue and the surrounding myocardium in cryoinjured hearts. However, the electrical dynamics occurring at the myocyte-nonmyocyte interface in the fibrotic heart remain undefined. Here, we sought to develop an assay to interrogate the nonmyocyte cell type contributing to heterocellular coupling and to characterize, on a cellular scale, its voltage response in the infarct border zone of living hearts. METHODS AND RESULTS: We used two-photon laser scanning microscopy in conjunction with a voltage-sensitive dye to record transmembrane voltage changes simultaneously from cardiomyocytes and adjoined nonmyocytes in Langendorff-perfused mouse hearts with healing myocardial infarction. Transgenic mice with cardiomyocyte-restricted expression of a green fluorescent reporter protein underwent permanent coronary artery ligation and their hearts were subjected to voltage imaging 7-10 days later. Reporter-negative cells, i.e. nonmyocytes, in the infarct border zone exhibited depolarizing transients at a 1:1 coupling ratio with action potentials recorded simultaneously from adjacent, reporter-positive ventricular myocytes. The electrotonic responses in the nonmyocytes exhibited slower rates of de- and repolarization compared to the action potential waveform of juxtaposed myocytes. Voltage imaging in infarcted hearts expressing a fluorescent reporter specifically in myofibroblasts revealed that the latter were electrically coupled to border zone myocytes. Their voltage transient properties were indistinguishable from those of nonmyocytes in hearts with cardiomyocyte-restricted reporter expression. The density of connexin43 expression at myofibroblast-cardiomyocyte junctions was ∼5% of that in the intercalated disc regions of paired ventricular myocytes in the remote, uninjured myocardium, whereas the ratio of connexin45 to connexin43 expression levels at heterocellular contacts was ∼1%. CONCLUSION: Myofibroblasts contribute to the population of electrically coupled nonmyocytes in the infarct border zone. The slower kinetics of myofibroblast voltage responses may reflect low electrical conductivity across heterocellular junctions, in accordance with the paucity of connexin expression at myofibroblast-cardiomyocyte contacts.


Assuntos
Potenciais de Ação , Comunicação Celular , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miofibroblastos/metabolismo , Animais , Conexina 43/metabolismo , Conexinas/metabolismo , Modelos Animais de Doenças , Condutividade Elétrica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Preparação de Coração Isolado , Cinética , Camundongos Transgênicos , Microscopia Confocal , Microscopia de Fluorescência por Excitação Multifotônica , Infarto do Miocárdio/patologia , Miócitos Cardíacos/patologia , Miofibroblastos/patologia
5.
J Clin Invest ; 127(12): 4285-4296, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29083322

RESUMO

Induction of the cell cycle is emerging as an intervention to treat heart failure. Here, we tested the hypothesis that enhanced cardiomyocyte renewal in transgenic mice expressing cyclin D2 would be beneficial during hemodynamic overload. We induced pressure overload by transthoracic aortic constriction (TAC) or volume overload by aortocaval shunt in cyclin D2-expressing and WT mice. Although cyclin D2 expression dramatically improved survival following TAC, it did not confer a survival advantage to mice following aortocaval shunt. Cardiac function decreased following TAC in WT mice, but was preserved in cyclin D2-expressing mice. On the other hand, cardiac structure and function were compromised in response to aortocaval shunt in both WT and cyclin D2-expressing mice. The preserved function and improved survival in cyclin D2-expressing mice after TAC was associated with an approximately 50% increase in cardiomyocyte number and exaggerated cardiac hypertrophy, as indicated by increased septum thickness. Aortocaval shunt did not further impact cardiomyocyte number in mice expressing cyclin D2. Following TAC, cyclin D2 expression attenuated cardiomyocyte hypertrophy, reduced cardiomyocyte apoptosis, fibrosis, calcium/calmodulin-dependent protein kinase IIδ phosphorylation, brain natriuretic peptide expression, and sustained capillarization. Thus, we show that cyclin D2-induced cardiomyocyte renewal reduced myocardial remodeling and dysfunction after pressure overload but not after volume overload.


Assuntos
Doenças da Aorta/metabolismo , Cardiomegalia/metabolismo , Proliferação de Células , Ciclina D2/metabolismo , Insuficiência Cardíaca/prevenção & controle , Miócitos Cardíacos/metabolismo , Animais , Doenças da Aorta/genética , Doenças da Aorta/patologia , Cardiomegalia/genética , Cardiomegalia/patologia , Constrição Patológica , Ciclina D2/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/patologia
6.
Anat Rec (Hoboken) ; 295(2): 234-48, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22095914

RESUMO

The paucity of mammalian adult cardiac myocytes (CM) proliferation following myocardial infarction (MI) and the remodeling of the necrotic tissue that ensues, result in non-regenerative repair. In contrast, zebrafish (ZF) can regenerate after an apical resection or cryoinjury of the heart. There is considerable interest in models where regeneration proceeds in the presence of necrotic tissue. We have developed and characterized a cautery injury model in the giant danio (GD), a species closely related to ZF, where necrotic tissue remains part of the ventricle, yet regeneration occurs. By light and transmission electron microscopy (TEM), we have documented four temporally overlapping processes: (1) a robust inflammatory response analogous to that observed in MI, (2) concomitant proliferation of epicardial cells leading to wound closure, (3) resorption of necrotic tissue and its replacement by granulation tissue, and (4) regeneration of the myocardial tissue driven by 5-EDU and [(3) H]thymidine incorporating CMs. In conclusion, our data suggest that the GD possesses robust repair mechanisms in the ventricle and can serve as an important model of cardiac inflammation, remodeling and regeneration.


Assuntos
Miócitos Cardíacos/patologia , Regeneração/fisiologia , Remodelação Ventricular/fisiologia , Peixe-Zebra/fisiologia , Animais , Proliferação de Células , Desoxiuridina/análogos & derivados , Desoxiuridina/metabolismo , Modelos Animais de Doenças , Tecido de Granulação/patologia , Inflamação/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Necrose , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Pericárdio/patologia , Timidina/metabolismo , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA