Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Cereb Cortex ; 33(6): 2641-2654, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35704860

RESUMO

We studied the longitudinal effects of approximately 6 months of spaceflight on brain activity and task-based connectivity during a spatial working memory (SWM) task. We further investigated whether any brain changes correlated with changes in SWM performance from pre- to post-flight. Brain activity was measured using functional magnetic resonance imaging while astronauts (n = 15) performed a SWM task. Data were collected twice pre-flight and 4 times post-flight. No significant effects on SWM performance or brain activity were found due to spaceflight; however, significant pre- to post-flight changes in brain connectivity were evident. Superior occipital gyrus showed pre- to post-flight reductions in task-based connectivity with the rest of the brain. There was also decreased connectivity between the left middle occipital gyrus and the left parahippocampal gyrus, left cerebellum, and left lateral occipital cortex during SWM performance. These results may reflect increased visual network modularity with spaceflight. Further, increased visual and visuomotor connectivity were correlated with improved SWM performance from pre- to post-flight, while decreased visual and visual-frontal cortical connectivity were associated with poorer performance post-flight. These results suggest that while SWM performance remains consistent from pre- to post-flight, underlying changes in connectivity among supporting networks suggest both disruptive and compensatory alterations due to spaceflight.


Assuntos
Memória de Curto Prazo , Voo Espacial , Encéfalo/diagnóstico por imagem , Cognição , Imageamento por Ressonância Magnética/métodos
2.
Mem Cognit ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710884

RESUMO

The long-term fate of to-be-remembered information depends in part on the conditions of initial learning, including mental operations engaged via working memory. However, the mechanistic role of working memory (WM) processes in subsequent episodic memory (EM) remains unclear. Does re-exposure to word-pairs during WM recognition testing improve EM for those associations? Are benefits from WM re-exposure greater after an opportunity for retrieval practice compared to mere re-exposure to the memoranda? These questions are addressed in three experiments (N = 460) designed to assess whether WM-based recognition testing benefits long-term associative memory relative to WM-based restudying. Our results show null or negative benefits of WM recognition testing minutes later when initial WM accuracy was not considered. An EM benefit of WM recognition testing only emerges when the analyses are limited to pairs responded to correctly during WM. However, even when compared with accurate WM recognition, restudying can lead to similar associative EM benefits in specific experimental conditions. Taken together, the present results suggest that while WM re-exposure to studied pairs is beneficial to long-term associative memory, successful retrieval on initial tests may be a necessary but insufficient condition for the emergence of a "WM-based testing effect." We consider these results in relation to several hypotheses proposed to explain the testing effect in long-term memory (LTM). In view of empirical parallels with the LTM testing effect, we propose that similar processes influence the benefits of practice tests administered within the canonical boundaries of WM, suggesting continuities in memory over the short and long term.

3.
Cogn Affect Behav Neurosci ; 23(3): 543-556, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36577934

RESUMO

The Value Learning Task (VLT; e.g., Raymond & O'Brien, 2009) is widely used to investigate how acquired value impacts how we perceive and process stimuli. The task consists of a series of trials in which participants attempt to maximize accumulated winnings as they make choices from a pair of presented images associated with probabilistic win, loss, or no-change outcomes. The probabilities and outcomes are initially unknown to the participant and thus the task involves decision making and learning under uncertainty. Despite the symmetric outcome structure for win and loss pairs, people learn win associations better than loss associations (Lin, Cabrera-Haro, & Reuter-Lorenz, 2020). This learning asymmetry could lead to differences when the stimuli are probed in subsequent tasks, compromising inferences about how acquired value affects downstream processing. We investigate the nature of the asymmetry using a standard error-driven reinforcement learning model with a softmax choice rule. Despite having no special role for valence, the model yields the learning asymmetry observed in human behavior, whether the model parameters are set to maximize empirical fit, or task payoff. The asymmetry arises from an interaction between a neutral initial value estimate and a choice policy that exploits while exploring, leading to more poorly discriminated value estimates for loss stimuli. We also show how differences in estimated individual learning rates help to explain individual differences in the observed win-loss asymmetries, and how the final value estimates produced by the model provide a simple account of a post-learning explicit value categorization task.


Assuntos
Tomada de Decisões , Reforço Psicológico , Humanos , Aprendizagem , Incerteza , Probabilidade
4.
Nat Rev Neurosci ; 19(11): 701-710, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30305711

RESUMO

Cognitive ageing research examines the cognitive abilities that are preserved and/or those that decline with advanced age. There is great individual variability in cognitive ageing trajectories. Some older adults show little decline in cognitive ability compared with young adults and are thus termed 'optimally ageing'. By contrast, others exhibit substantial cognitive decline and may develop dementia. Human neuroimaging research has led to a number of important advances in our understanding of the neural mechanisms underlying these two outcomes. However, interpreting the age-related changes and differences in brain structure, activation and functional connectivity that this research reveals is an ongoing challenge. Ambiguous terminology is a major source of difficulty in this venture. Three terms in particular - compensation, maintenance and reserve - have been used in a number of different ways, and researchers continue to disagree about the kinds of evidence or patterns of results that are required to interpret findings related to these concepts. As such inconsistencies can impede progress in both theoretical and empirical research, here, we aim to clarify and propose consensual definitions of these terms.


Assuntos
Encéfalo/fisiologia , Envelhecimento Cognitivo/fisiologia , Envelhecimento Cognitivo/psicologia , Envelhecimento Saudável/fisiologia , Envelhecimento Saudável/psicologia , Neurociência Cognitiva , Reserva Cognitiva , Humanos
5.
Nat Rev Neurosci ; 19(12): 772, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30405175

RESUMO

In the originally published version of article, there were two errors in the references. The reference "Nilsson, J. & Lövdén, M. Naming is not explaining: future directions for the "cognitive reserve" and "brain maintenance" theories. Alzheimer's Res. Ther. 10, 34 (2018)" was missing. This reference has been added as REF. 14 in the HTML and PDF versions of the article and cited at the end of the sentence "However, over the years, these terms have been used inconsistently, creating confusion and slowing progress." on page 701 and at the end of the sentence "If reserve is defined merely as the factor that individuals with greater reserve have and then this factor is used to explain why some individuals have greater reserve, the argument is clearly circular." on page 704. The reference list has been renumbered accordingly. In addition, in the original reference list, REF. 91 was incorrect. The reference should have read "Cabeza, R. Hemispheric asymmetry reduction in older adults. The HAROLD model. Psychol. Aging 17, 85-100 (2002)". This reference, which is REF. 92 in the corrected reference list, has been corrected in the HTML and PDF versions of the article.

6.
Nat Rev Neurosci ; 19(12): 772, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-31586163

RESUMO

In Figure 3b of the originally published article, the colours of the bars were incorrectly reversed. The bars shown in green should have been shown in blue to represent the findings from older adults, whereas the bars shown in blue should have been shown in green to represent the findings from young adults. This has been corrected in the HTML and PDF versions of the article. Images of the original figure are shown in the correction notice.

7.
Hum Brain Mapp ; 42(6): 1888-1909, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33534925

RESUMO

Demanding cognitive functions like working memory (WM) depend on functional brain networks being able to communicate efficiently while also maintaining some degree of modularity. Evidence suggests that aging can disrupt this balance between integration and modularity. In this study, we examined how cognitive training affects the integration and modularity of functional networks in older and younger adults. Twenty three younger and 23 older adults participated in 10 days of verbal WM training, leading to performance gains in both age groups. Older adults exhibited lower modularity overall and a greater decrement when switching from rest to task, compared to younger adults. Interestingly, younger but not older adults showed increased task-related modularity with training. Furthermore, whereas training increased efficiency within, and decreased participation of, the default-mode network for younger adults, it enhanced efficiency within a task-specific salience/sensorimotor network for older adults. Finally, training increased segregation of the default-mode from frontoparietal/salience and visual networks in younger adults, while it diffusely increased between-network connectivity in older adults. Thus, while younger adults increase network segregation with training, suggesting more automated processing, older adults persist in, and potentially amplify, a more integrated and costly global workspace, suggesting different age-related trajectories in functional network reorganization with WM training.


Assuntos
Envelhecimento/fisiologia , Conectoma , Rede de Modo Padrão/fisiologia , Memória de Curto Prazo/fisiologia , Rede Nervosa/fisiologia , Prática Psicológica , Adolescente , Adulto , Fatores Etários , Idoso , Rede de Modo Padrão/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
8.
Cereb Cortex ; 30(6): 3704-3716, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32043110

RESUMO

Age-related declines in sensorimotor performance have been linked to dedifferentiation of neural representations (i.e., more widespread activity during task performance in older versus younger adults). However, it remains unclear whether changes in neural representations across the adult lifespan are related between the motor and somatosensory systems, and whether alterations in these representations are associated with age declines in motor and somatosensory performance. To investigate these issues, we collected functional magnetic resonance imaging and behavioral data while participants aged 19-76 years performed a visuomotor tapping task or received vibrotactile stimulation. Despite one finding indicative of compensatory mechanisms with older age, we generally observed that 1) older age was associated with greater activity and stronger positive connectivity within sensorimotor and LOC regions during both visuomotor and vibrotactile tasks; 2) increased activation and stronger positive connectivity were associated with worse performance; and 3) age differences in connectivity in the motor system correlated with those in the somatosensory system. Notwithstanding the difficulty of disentangling the relationships between age, brain, and behavioral measures, these results provide novel evidence for neural dedifferentiation across the adult lifespan in both motor and somatosensory systems and suggest that dedifferentiation in these two systems is related.


Assuntos
Envelhecimento/fisiologia , Encéfalo/fisiologia , Desempenho Psicomotor/fisiologia , Percepção do Tato/fisiologia , Adulto , Idoso , Feminino , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais , Adulto Jovem
9.
Neuroimage ; 217: 116887, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32376302

RESUMO

Brain activity typically increases with increasing working memory (WM) load, regardless of age, before reaching an apparent ceiling. However, older adults exhibit greater brain activity and reach ceiling at lower loads than younger adults, possibly reflecting compensation at lower loads and dysfunction at higher loads. We hypothesized that WM training would bolster neural efficiency, such that the activation peak would shift towards higher memory loads after training. Pre-training, older adults showed greater recruitment of the WM network than younger adults across all loads, with decline at the highest load. Ten days of adaptive training on a verbal WM task improved performance and led to greater brain responsiveness at higher loads for both groups. For older adults the activation peak shifted rightward towards higher loads. Finally, training increased task-related functional connectivity in older adults, both within the WM network and between this task-positive network and the task-negative/default-mode network. These results provide new evidence for functional plasticity with training in older adults and identify a potential signature of improvement at the neural level.


Assuntos
Memória de Curto Prazo/fisiologia , Plasticidade Neuronal/fisiologia , Idoso , Envelhecimento/fisiologia , Envelhecimento/psicologia , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Mapeamento Encefálico , Cognição/fisiologia , Função Executiva/fisiologia , Feminino , Humanos , Aprendizagem , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/fisiologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/fisiologia , Desempenho Psicomotor , Adulto Jovem
11.
Memory ; 27(3): 397-409, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30152262

RESUMO

Evidence for false recognition within seconds of encoding suggests that semantic-associative influences are not restricted to long-term memory, consistent with unitary memory accounts but contrary to dual store models. The present study sought further relevant evidence using a modified free recall converging associates task where participants studied 12-item lists composed of 3 semantically distinct quartets (sublists) related to a separate, non-presented theme word (i.e., words 1-4/theme1, 5-8/theme2, and 9-12/theme3). This list construction permits assessment of false recall errors from each sublist, and, particularly, the primacy and recency sublists that have been linked to long- and short-term memory stores. Experiment 1 tested immediate free recall for items. Associative false memories were evident from all sublists, however, significantly less so from the recent sublist, which also showed the highest levels of veridical memory. By inserting a brief (3 s) distractor prior to recall, Experiment 2 selectively reduced veridical memory and increased false memory for the recent sublist while leaving the primacy sublist unaffected. These recall results converge with prior evidence indicating the immediacy of false recognition, and can be understood within a unitary framework where the differential availability of verbatim features and gist-based cues affect memory for primacy and recency sublists.


Assuntos
Memória de Curto Prazo , Rememoração Mental/fisiologia , Semântica , Adulto , Feminino , Humanos , Masculino , Reconhecimento Psicológico , Adulto Jovem
12.
J Neurophysiol ; 119(6): 2145-2152, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29488843

RESUMO

Head-down tilt bed rest (HDBR) has been used as a spaceflight analog to study some of the effects of microgravity on human physiology, cognition, and sensorimotor functions. Previous studies have reported declines in balance control and functional mobility after spaceflight and HDBR. In this study we investigated how the brain activation for foot movement changed with HDBR. Eighteen healthy men participated in the current HDBR study. They were in a 6° head-down tilt position continuously for 70 days. Functional MRI scans were acquired to estimate brain activation for foot movement before, during, and after HDBR. Another 11 healthy men who did not undergo HDBR participated as control subjects and were scanned at four time points. In the HDBR subjects, the cerebellum, fusiform gyrus, hippocampus, and middle occipital gyrus exhibited HDBR-related increases in activation for foot tapping, whereas no HDBR-associated activation decreases were found. For the control subjects, activation for foot tapping decreased across sessions in a couple of cerebellar regions, whereas no activation increase with session was found. Furthermore, we observed that less HDBR-related decline in functional mobility and balance control was associated with greater pre-to-post HDBR increases in brain activation for foot movement in several cerebral and cerebellar regions. Our results suggest that more neural control is needed for foot movement as a result of HDBR. NEW & NOTEWORTHY Long-duration head-down bed rest serves as a spaceflight analog research environment. We show that brain activity in the cerebellum and visual areas during foot movement increases from pre- to post-bed rest and then shows subsequent recovery. Greater increases were seen for individuals who exhibited less decline in functional mobility and balance control, suggestive of adaptive changes in neural control with long-duration bed rest.


Assuntos
Córtex Cerebral/fisiologia , Pé/fisiologia , Decúbito Inclinado com Rebaixamento da Cabeça , Simulação de Ausência de Peso/efeitos adversos , Adulto , Repouso em Cama/efeitos adversos , Cerebelo/fisiologia , Pé/inervação , Humanos , Locomoção , Masculino , Equilíbrio Postural
13.
Hum Brain Mapp ; 39(7): 2753-2763, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29528169

RESUMO

Head-down-tilt bed rest (HDBR) is frequently utilized as a spaceflight analog research environment to study the effects of axial body unloading and fluid shifts that are associated with spaceflight in the absence of gravitational modifications. HDBR has been shown to result in balance changes, presumably due to sensory reweighting and adaptation processes. Here, we examined whether HDBR results in changes in the neural correlates of vestibular processing. Thirteen men participated in a 70-day HDBR intervention; we measured balance, functional mobility, and functional brain activity in response to vestibular stimulation at 7 time points before, during, and after HDBR. Vestibular stimulation was administered by means of skull taps, resulting in activation of the vestibular cortex and deactivation of the cerebellar, motor, and somatosensory cortices. Activation in the bilateral insular cortex, part of the vestibular network, gradually increased across the course of HDBR, suggesting an upregulation of vestibular inputs in response to the reduced somatosensory inputs experienced during bed rest. Furthermore, greater increase of activation in multiple frontal, parietal, and occipital regions in response to vestibular stimulation during HDBR was associated with greater decrements in balance and mobility from before to after HDBR, suggesting reduced neural efficiency. These findings shed light on neuroplastic changes occurring with conditions of altered sensory inputs, and reveal the potential for central vestibular-somatosensory convergence and reweighting with bed rest.


Assuntos
Repouso em Cama , Córtex Cerebral/fisiologia , Neuroimagem Funcional/métodos , Decúbito Inclinado com Rebaixamento da Cabeça/fisiologia , Plasticidade Neuronal/fisiologia , Equilíbrio Postural/fisiologia , Desempenho Psicomotor/fisiologia , Vestíbulo do Labirinto/fisiologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estimulação Física , Voo Espacial , Fatores de Tempo , Adulto Jovem
14.
Hum Brain Mapp ; 39(4): 1516-1531, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29274105

RESUMO

In this study, we investigate whether individual variability in the rate of visuomotor adaptation and multiday savings is associated with differences in regional gray matter volume and resting-state functional connectivity. Thirty-four participants performed a manual adaptation task during two separate test sessions, on average 9 days apart. Functional connectivity strength between sensorimotor, dorsal cingulate, and temporoparietal regions of the brain was found to predict the rate of learning during the early phase of the adaptation task. In contrast, default mode network connectivity strength was found to predict both the rate of learning during the late adaptation phase and savings. As for structural predictors, greater gray matter volume in temporoparietal and occipital regions predicted faster early learning, whereas greater gray matter volume in superior posterior regions of the cerebellum predicted faster late learning. These findings suggest that the offline neural predictors of early adaptation may facilitate the cognitive aspects of sensorimotor adaptation, supported by the involvement of temporoparietal and cingulate networks. The offline neural predictors of late adaptation and savings, including the default mode network and the cerebellum, likely support the storage and modification of newly acquired sensorimotor representations.


Assuntos
Adaptação Psicológica/fisiologia , Encéfalo/fisiologia , Aprendizagem/fisiologia , Atividade Motora/fisiologia , Percepção Visual/fisiologia , Adaptação Fisiológica/fisiologia , Adulto , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Feminino , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/anatomia & histologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Tamanho do Órgão , Descanso
15.
Neuroimage ; 141: 18-30, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27423254

RESUMO

Sensorimotor functioning is adaptively altered following long-duration spaceflight. The question of whether microgravity affects other central nervous system functions such as brain network organization and its relationship with behavior is largely unknown, but of importance to the health and performance of astronauts both during and post-flight. In the present study, we investigate the effects of prolonged exposure to an established spaceflight analog on resting state brain functional connectivity and its association with behavioral changes in 17 male participants. These bed rest participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. Resting state functional magnetic resonance imaging (rs-fMRI) and behavioral data were obtained at seven time points averaging around: 12 and 8days prior to bed rest; 7, 50, and 70days during bed rest; and 8 and 12days after bed rest. To assess potential confounding effects due to scanning interval or task practice, we also acquired rs-fMRI and behavioral measurements from 14 control participants at four time points. 70days of head-down tilt (HDT) bed rest resulted in significant changes in the functional connectivity of motor, somatosensory, and vestibular areas of the brain. Moreover, several of these network alterations were significantly associated with changes in sensorimotor and spatial working memory performance, which suggests that neuroplasticity mechanisms may facilitate adaptation to the microgravity analog environment. The findings from this study provide novel insights into the underlying neural mechanisms and operational risks of spaceflight analog-related changes in sensorimotor performance.


Assuntos
Memória de Curto Prazo/fisiologia , Córtex Motor/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Somatossensorial/fisiologia , Voo Espacial/métodos , Memória Espacial/fisiologia , Simulação de Ausência de Peso/métodos , Adulto , Repouso em Cama/métodos , Conectoma/métodos , Feminino , Decúbito Inclinado com Rebaixamento da Cabeça/fisiologia , Humanos , Masculino , Rede Nervosa/fisiologia , Vias Neurais/fisiologia
16.
Exp Brain Res ; 234(6): 1385-94, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26746312

RESUMO

Although emotion is known to reciprocally interact with cognitive and motor performance, contemporary theories of motor learning do not specifically consider how dynamic variations in a learner's affective state may influence motor performance during motor learning. Using a prism adaptation paradigm, we assessed emotion during motor learning on a trial-by-trial basis. We designed two dart-throwing experiments to dissociate motor performance and reward outcomes by giving participants maximum points for accurate throws and reduced points for throws that hit zones away from the target (i.e., "accidental points"). Experiment 1 dissociated motor performance from emotional responses and found that affective ratings tracked points earned more closely than error magnitude. Further, both reward and error uniquely contributed to motor learning, as indexed by the change in error from one trial to the next. Experiment 2 manipulated accidental point locations vertically, whereas prism displacement remained horizontal. Results demonstrated that reward could bias motor performance even when concurrent sensorimotor adaptation was taking place in a perpendicular direction. Thus, these experiments demonstrate that affective states were dissociable from error magnitude during motor learning and that affect more closely tracked points earned. Our findings further implicate reward as another factor, other than error, that contributes to motor learning, suggesting the importance of incorporating affective states into models of motor learning.


Assuntos
Adaptação Fisiológica/fisiologia , Emoções/fisiologia , Aprendizagem/fisiologia , Atividade Motora/fisiologia , Desempenho Psicomotor/fisiologia , Recompensa , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
17.
Proc Natl Acad Sci U S A ; 110(44): 17615-22, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24151336

RESUMO

The last decades of neuroscience research have produced immense progress in the methods available to understand brain structure and function. Social, cognitive, clinical, affective, economic, communication, and developmental neurosciences have begun to map the relationships between neuro-psychological processes and behavioral outcomes, yielding a new understanding of human behavior and promising interventions. However, a limitation of this fast moving research is that most findings are based on small samples of convenience. Furthermore, our understanding of individual differences may be distorted by unrepresentative samples, undermining findings regarding brain-behavior mechanisms. These limitations are issues that social demographers, epidemiologists, and other population scientists have tackled, with solutions that can be applied to neuroscience. By contrast, nearly all social science disciplines, including social demography, sociology, political science, economics, communication science, and psychology, make assumptions about processes that involve the brain, but have incorporated neural measures to differing, and often limited, degrees; many still treat the brain as a black box. In this article, we describe and promote a perspective--population neuroscience--that leverages interdisciplinary expertise to (i) emphasize the importance of sampling to more clearly define the relevant populations and sampling strategies needed when using neuroscience methods to address such questions; and (ii) deepen understanding of mechanisms within population science by providing insight regarding underlying neural mechanisms. Doing so will increase our confidence in the generalizability of the findings. We provide examples to illustrate the population neuroscience approach for specific types of research questions and discuss the potential for theoretical and applied advances from this approach across areas.


Assuntos
Individualidade , Comunicação Interdisciplinar , Relações Interpessoais , Neuroimagem/métodos , Neurociências/tendências , Humanos , Neuroimagem/tendências
18.
Neuroimage ; 104: 21-34, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25284304

RESUMO

We examined functional activation across the adult lifespan in 316 healthy adults aged 20-89years on a judgment task that, across conditions, drew upon both semantic knowledge and ability to modulate neural function in response to cognitive challenge. Activation in core regions of the canonical semantic network (e.g., left IFG) were largely age-invariant, consistent with cognitive aging studies that show verbal knowledge is preserved across the lifespan. However, we observed a steady linear increase in activation with age in regions outside the core network, possibly as compensation to maintain function. Under conditions of increased task demands, we observed a stepwise reduction across the lifespan of modulation of activation to increasing task demands in cognitive control regions (frontal, parietal, anterior cingulate), paralleling the neural equivalent of "processing resources" described by cognitive aging theories. Middle-age was characterized by decreased modulation to task-demand in subcortical regions (caudate, nucleus accumbens, thalamus), and very old individuals showed reduced modulation to task difficulty in midbrain/brainstem regions (ventral tegmental, substantia nigra). These novel findings suggest that aging of activation to demand follows a gradient along the dopaminergic/nigrostriatal system, with earliest manifestation in fronto-parietal regions, followed by deficits in subcortical nuclei in middle-age and then to midbrain/brainstem dopaminergic regions in the very old.


Assuntos
Envelhecimento/fisiologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Mapeamento Encefálico , Corpo Estriado/fisiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Julgamento , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Substância Negra/fisiologia , Adulto Jovem
19.
Hum Brain Mapp ; 36(3): 1077-92, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25388082

RESUMO

Stressful life events are related to negative outcomes, including physical and psychological manifestations of distress, and behavioral deficits. Patients diagnosed with breast cancer report impaired attention and working memory prior to adjuvant therapy, which may be induced by distress. In this article, we examine whether brain dynamics show systematic changes due to the distress associated with cancer diagnosis. We hypothesized that impaired working memory is associated with suppression of "long-memory" neuronal dynamics; we tested this by measuring scale-free ("fractal") brain dynamics, quantified by the Hurst exponent (H). Fractal scaling refers to signals that do not occur at a specific time-scale, possessing a spectral power curve P(f)∝ f(-ß); they are "long-memory" processes, with significant autocorrelations. In a BOLD functional magnetic resonance imaging study, we scanned three groups during a working memory task: women scheduled to receive chemotherapy or radiotherapy and aged-matched controls. Surprisingly, patients' BOLD signal exhibited greater H with increasing intensity of anticipated treatment. However, an analysis of H and functional connectivity against self-reported measures of psychological distress (Worry, Anxiety, Depression) and physical distress (Fatigue, Sleep problems) revealed significant interactions. The modulation of (Worry, Anxiety) versus (Fatigue, Sleep Problems, Depression) showed the strongest effect, where higher worry and lower fatigue was related to reduced H in regions involved in visuospatial search, attention, and memory processing. This is also linked to decreased functional connectivity in these brain regions. Our results indicate that the distress associated with cancer diagnosis alters BOLD scaling, and H is a sensitive measure of the interaction between psychological versus physical distress.


Assuntos
Encéfalo/fisiopatologia , Neoplasias da Mama/psicologia , Conectoma , Imageamento por Ressonância Magnética/métodos , Memória de Curto Prazo/fisiologia , Estresse Psicológico/fisiopatologia , Adulto , Feminino , Fractais , Humanos , Estresse Psicológico/psicologia
20.
Conscious Cogn ; 36: 169-79, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26160137

RESUMO

While many aspects of cognition have been investigated in relation to skilled music training, surprisingly little work has examined the connection between music training and attentional abilities. The present study investigated the performance of skilled musicians on cognitively demanding sustained attention tasks, measuring both temporal and visual discrimination over a prolonged duration. Participants with extensive formal music training were found to have superior performance on a temporal discrimination task, but not a visual discrimination task, compared to participants with no music training. In addition, no differences were found between groups in vigilance decrement in either type of task. Although no differences were evident in vigilance per se, the results indicate that performance in an attention-demanding temporal discrimination task was superior in individuals with extensive music training. We speculate that this basic cognitive ability may contribute to advantages that musicians show in other cognitive measures.


Assuntos
Atenção/fisiologia , Discriminação Psicológica/fisiologia , Música , Desempenho Psicomotor/fisiologia , Percepção do Tempo/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA