Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 11(10): 2539-44, 2010 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-20831150

RESUMO

The formation of calcite prism architecture in the prismatic layer of the mollusk shell involves the participation of a number of different proteins. One protein family, Asprich, has been identified as a participant in amorphous calcium carbonate stabilization and calcite architecture in the prismatic layer of the mollusk, Atrina rigida . However, the functional role(s) of this protein family are not fully understood due to the fact that insufficient quantities of these proteins are available for experimentation. To overcome this problem, we employed stepwise solid-phase synthesis to recreate one of the 10 members of the Asprich family, the 61 AA single chain protein, Asprich "3". We find that the Asprich "3" protein inhibits the formation of rhombohedral calcite crystals and induces the formation of round calcium carbonate deposits in vitro that contain calcite and amorphous calcium carbonate (ACC). This mineralization behavior does not occur under control conditions, and the formation of ACC and calcite is similar to that reported for the recombinant form of the Asprich "g" protein. Circular dichroism studies reveal that Asprich "3" is an intrinsically disordered protein, predominantly random coil (66%), with 20-30% ß-strand content, a small percentage of ß-turn, and little if any α-helical content. This protein is not extrinsically stabilized by Ca(II) ions but can be stabilized by 2,2,2-trifluoroethanol to form a structure consisting of turn-like and random coil characteristics. This finding suggests that Asprich "3" may require other extrinsic interactions (i.e., with mineral or ionic clusters or other macromolecules) to achieve folding. In conclusion, Asprich "3" possesses in vitro functional and structural qualities that are similar to other reported for other Asprich protein sequences.


Assuntos
Bivalves/química , Carbonato de Cálcio/química , Proteínas/química , Sequência de Aminoácidos , Animais , Bivalves/metabolismo , Bivalves/ultraestrutura , Carbonato de Cálcio/metabolismo , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Cristalização , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Conformação Proteica , Dobramento de Proteína , Proteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Difração de Raios X
2.
Protein Sci ; 20(4): 724-34, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21351181

RESUMO

Amelogenins are an intrinsically disordered protein family that plays a major role in the development of tooth enamel, one of the most highly mineralized materials in nature. Monomeric porcine amelogenin possesses random coil and residual secondary structures, but it is not known which sequence regions would be conformationally attractive to potential enamel matrix targets such as other amelogenins (self-assembly), other matrix proteins, cell surfaces, or biominerals. To address this further, we investigated recombinant porcine amelogenin (rP172) using "solvent engineering" techniques to simultaneously promote native-like structure and induce amelogenin oligomerization in a manner that allows identification of intermolecular contacts between amelogenin molecules. We discovered that in the presence of 2,2,2-trifluoroethanol (TFE) significant folding transitions and stabilization occurred primarily within the N- and C-termini, while the polyproline Type II central domain was largely resistant to conformational transitions. Seven Pro residues (P2, P127, P130, P139, P154, P157, P162) exhibited conformational response to TFE, and this indicates these Pro residues act as folding enhancers in rP172. The remaining Pro residues resisted TFE perturbations and thus act as conformational stabilizers. We also noted that TFE induced rP172 self-association via the formation of intermolecular contacts involving P4-H6, V19-P33, and E40-T58 regions of the N-terminus. Collectively, these results confirm that the N- and C-termini of amelogenin are conformationally responsive and represent potential interactive sites for amelogenin-target interactions during enamel matrix mineralization. Conversely, the Pro, Gln central domain is resistant to folding and this may have important functional significance for amelogenin.


Assuntos
Amelogenina/química , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Amelogenina/genética , Sequência de Aminoácidos , Animais , Esmalte Dentário/química , Dados de Sequência Molecular , Peptídeos/química , Multimerização Proteica , Proteínas Recombinantes/genética , Suínos , Trifluoretanol/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA