Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 34(9): 11562-11576, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32652761

RESUMO

In skeletal muscle fibers, mitochondria are densely packed adjacent to myofibrils because adenosine triphosphate (ATP) is needed to fuel sarcomere shortening. However, despite this close physical and biochemical relationship, the effects of mitochondrial dynamics on skeletal muscle contractility are poorly understood. In this study, we analyzed the effects of Mitochondrial Division Inhibitor 1 (mdivi-1), an inhibitor of mitochondrial fission, on the structure and function of both mitochondria and myofibrils in skeletal muscle tissues engineered on micromolded gelatin hydrogels. Treatment with mdivi-1 did not alter myotube morphology, but did increase the mitochondrial turbidity and oxidative capacity, consistent with reduced mitochondrial fission. Mdivi-1 also significantly increased basal, twitch, and tetanus stresses, as measured using the Muscular Thin Film (MTF) assay. Finally, mdivi-1 increased sarcomere length, potentially due to mdivi-1-induced changes in mitochondrial volume and compression of myofibrils. Together, these results suggest that mdivi-1 increases contractile stress generation, which may be caused by an increase in maximal respiration and/or sarcomere length due to increased volume of individual mitochondria. These data reinforce that mitochondria have both biochemical and biomechanical roles in skeletal muscle and that mitochondrial dynamics can be manipulated to alter muscle contractility.


Assuntos
Mitocôndrias Musculares/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Mioblastos Esqueléticos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Quinazolinonas/farmacologia , Animais , Linhagem Celular , Dinaminas/metabolismo , Camundongos , Mitocôndrias Musculares/metabolismo , Dinâmica Mitocondrial/fisiologia , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/metabolismo , Oxirredução/efeitos dos fármacos , Sarcômeros/efeitos dos fármacos , Sarcômeros/metabolismo , Sarcômeros/fisiologia
2.
Sci Adv ; 8(49): eabn7097, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36475790

RESUMO

After a myocardial infarction, the boundary between the injured, hypoxic tissue and the adjacent viable, normoxic tissue, known as the border zone, is characterized by an oxygen gradient. Yet, the impact of an oxygen gradient on cardiac tissue function is poorly understood, largely due to limitations of existing experimental models. Here, we engineered a microphysiological system to controllably expose engineered cardiac tissue to an oxygen gradient that mimics the border zone and measured the effects of the gradient on electromechanical function and the transcriptome. The gradient delayed calcium release, reuptake, and propagation; decreased diastolic and peak systolic stress; and increased expression of inflammatory cascades that are hallmarks of myocardial infarction. These changes were distinct from those observed in tissues exposed to uniform normoxia or hypoxia, demonstrating distinct regulation of cardiac tissue phenotypes by an oxygen gradient. Our border-zone-on-a-chip model advances functional and mechanistic insight into oxygen-dependent cardiac tissue pathophysiology.

3.
Methods Mol Biol ; 2258: 57-72, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33340354

RESUMO

In vitro models that recapitulate key aspects of native tissue architecture and the physical microenvironment are emerging systems for modeling development and disease. For example, the myocardium consists of layers of aligned and coupled cardiac myocytes that are interspersed with supporting cells and embedded in a compliant extracellular matrix (ECM). These cell-cell and cell-matrix interactions are known to be important regulators of tissue physiology and pathophysiology. In this protocol, we describe a method for mimicking the alignment, cell-cell interactions, and rigidity of the myocardium by engineering an array of square, aligned cardiac microtissues on polyacrylamide hydrogels. This entails three key methods: (1) fabricating elastomer stamps with a microtissue pattern; (2) preparing polyacrylamide hydrogel culture substrates with tunable elastic moduli; and (3) transferring ECM proteins onto the surface of the hydrogels using microcontact printing. These hydrogels can then be seeded with cardiac myocytes or mixtures of cardiac myocytes and fibroblasts to adjust cell-cell interactions. Overall, this approach is advantageous because shape-controlled microtissues encompass both cell-cell and cell-matrix adhesions in a form factor that is relatively reproducible and scalable. Furthermore, polyacrylamide hydrogels are compatible with the traction force microscopy assay for quantifying contractility, a critical function of the myocardium. Although cardiac microtissues are the example presented in this protocol, the techniques are relatively versatile and could have many applications in modeling other tissue systems.


Assuntos
Resinas Acrílicas/química , Comunicação Celular , Junções Célula-Matriz/metabolismo , Microambiente Celular , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Miócitos Cardíacos/metabolismo , Engenharia Tecidual , Animais , Técnicas de Cultura de Células , Células Cultivadas , Módulo de Elasticidade , Humanos , Hidrogéis , Ligantes , Fenótipo , Transdução de Sinais , Propriedades de Superfície
4.
Lab Chip ; 21(4): 674-687, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33439202

RESUMO

Controlled electrical stimulation is essential for evaluating the physiology of cardiac tissues engineered in heart-on-a-chip devices. However, existing stimulation techniques, such as external platinum electrodes or opaque microelectrode arrays patterned on glass substrates, have limited throughput, reproducibility, or compatibility with other desirable features of heart-on-a-chip systems, such as the use of tunable culture substrates, imaging accessibility, or enclosure in a microfluidic device. In this study, indium tin oxide (ITO), a conductive, semi-transparent, and biocompatible material, was deposited onto glass and polydimethylsiloxane (PDMS)-coated coverslips as parallel or point stimulation electrodes using laser-cut tape masks. ITO caused substrate discoloration but did not prevent brightfield imaging. ITO-patterned substrates were microcontact printed with arrayed lines of fibronectin and seeded with neonatal rat ventricular myocytes, which assembled into aligned cardiac tissues. ITO deposited as parallel or point electrodes was connected to an external stimulator and used to successfully stimulate micropatterned cardiac tissues to generate calcium transients or propagating calcium waves, respectively. ITO electrodes were also integrated into the cantilever-based muscular thin film (MTF) assay to stimulate and quantify the contraction of micropatterned cardiac tissues. To demonstrate the potential for multiple ITO electrodes to be integrated into larger, multiplexed systems, two sets of ITO electrodes were deposited onto a single substrate and used to stimulate the contraction of distinct micropatterned cardiac tissues independently. Collectively, these approaches for integrating ITO electrodes into heart-on-a-chip devices are relatively facile, modular, and scalable and could have diverse applications in microphysiological systems of excitable tissues.


Assuntos
Dispositivos Lab-On-A-Chip , Compostos de Estanho , Animais , Dimetilpolisiloxanos , Ratos , Reprodutibilidade dos Testes
5.
Nat Commun ; 9(1): 3850, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242159

RESUMO

The molecular mechanisms underlying the metabolic shift toward increased glycolysis observed in pulmonary artery smooth muscle cells (PASMC) during the pathogenesis of pulmonary arterial hypertension (PAH) are not fully understood. Here we show that the glycolytic enzyme α-enolase (ENO1) regulates the metabolic reprogramming and malignant phenotype of PASMC. We show that ENO1 levels are elevated in patients with associated PAH and in animal models of hypoxic pulmonary hypertension (HPH). The silencing or inhibition of ENO1 decreases PASMC proliferation and de-differentiation, and induces PASMC apoptosis, whereas the overexpression of ENO1 promotes a synthetic, de- differentiated, and apoptotic-resistant phenotype via the AMPK-Akt pathway. The suppression of ENO1 prevents the hypoxia-induced metabolic shift from mitochondrial respiration to glycolysis in PASMC. Finally, we find that pharmacological inhibition of ENO1 reverses HPH in mice and rats, suggesting ENO1 as a regulator of pathogenic metabolic reprogramming in HPH.


Assuntos
Hipertensão Pulmonar/etiologia , Miócitos de Músculo Liso/enzimologia , Fosfopiruvato Hidratase/metabolismo , Adenilato Quinase/metabolismo , Animais , Apoptose , Diferenciação Celular , Respiração Celular , Modelos Animais de Doenças , Glicólise , Humanos , Hipertensão Pulmonar/enzimologia , Camundongos , Fenótipo , Fosfopiruvato Hidratase/antagonistas & inibidores , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Artéria Pulmonar/enzimologia , Ratos
6.
Integr Biol (Camb) ; 9(9): 742-750, 2017 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-28840922

RESUMO

Gas-perfused microchannels generated a linear oxygen gradient via diffusion across a 100 µm polydimethylsiloxane (PDMS) membrane. The device enabled exposure of a single monolayer of cells sharing culture media to a heterogeneous oxygen landscape, thus reflecting the oxygen gradients found at the microscale in the physiological setting and allowing for the real-time exchange of paracrine factors and metabolites between cells exposed to varying oxygen levels. By tuning the distance between two gas supply channels, the slope of the oxygen gradient was controlled. We studied the hypoxic activation of the transcription factors HIF-1α and HIF-2α in human endothelial cells within a spatial linear gradient of oxygen. Quantification of the nuclear to cytosolic ratio of HIF immunofluorescent staining demonstrated that the threshold for HIF-1α activation was below 2.5% O2 while HIF-2α was activated throughout the entire linear gradient. We show for the first time HIF-2α is subject to hyproxya, hypoxia by proxy, wherein hypoxic cells activate HIF in close-proximity normoxic cells. These results underscore the differences between HIF-1α and HIF-2α regulation and suggest that a microfluidic oxygen gradient is a novel tool for identifying distinct hypoxic signaling activation and interactions between differentially oxygenated cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia Celular/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Oxigênio/metabolismo , Linhagem Celular , Células Endoteliais/metabolismo , Desenho de Equipamento , Humanos , Dispositivos Lab-On-A-Chip , Citometria de Varredura a Laser , Transdução de Sinais
7.
PLoS One ; 10(9): e0137631, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26360882

RESUMO

3D printing has emerged as a method for directly printing complete microfluidic devices, although printing materials have been limited to oxygen-impermeable materials. We demonstrate the addition of gas permeable PDMS (Polydimethylsiloxane) membranes to 3D-printed microfluidic devices as a means to enable oxygen control cell culture studies. The incorporation of a 3D-printed device and gas-permeable membranes was demonstrated on a 24-well oxygen control device for standard multiwell plates. The direct printing allows integrated distribution channels and device geometries not possible with traditional planar lithography. With this device, four different oxygen conditions were able to be controlled, and six wells were maintained under each oxygen condition. We demonstrate enhanced transcription of the gene VEGFA (vascular endothelial growth factor A) with decreasing oxygen levels in human lung adenocarcinoma cells. This is the first 3D-printed device incorporating gas permeable membranes to facilitate oxygen control in cell culture.


Assuntos
Oxigênio/análise , Impressão Tridimensional/instrumentação , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Humanos , Membranas Artificiais , Oxigênio/metabolismo , Fator A de Crescimento do Endotélio Vascular
8.
Lab Chip ; 14(24): 4688-95, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25315003

RESUMO

An open-well microfluidic platform generates an oxygen landscape using gas-perfused networks which diffuse across a membrane. The device enables real-time analysis of cellular and tissue responses to oxygen tension to define how cells adapt to heterogeneous oxygen conditions found in the physiological setting. We demonstrate that localized hypoxic activation of cells elicited specific metabolic and gene responses in human microvascular endothelial cells and bone marrow-derived mesenchymal stem cells. A robust demonstration of the compatibility of the device with standard laboratory techniques demonstrates the wide utility of the method. This platform is ideally suited to study real-time cell responses and cell-cell interactions within physiologically relevant oxygen landscapes.


Assuntos
Comunicação Celular , Células Endoteliais , Técnicas Analíticas Microfluídicas , Oxigênio/metabolismo , Hipóxia Celular , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos
9.
Lab Chip ; 14(22): 4305-18, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25251498

RESUMO

Cellular function and behavior are affected by the partial pressure of O2, or oxygen tension, in the microenvironment. The level of oxygenation is important, as it is a balance of oxygen availability and oxygen consumption that is necessary to maintain normoxia. Changes in oxygen tension, from above physiological oxygen tension (hyperoxia) to below physiological levels (hypoxia) or even complete absence of oxygen (anoxia), trigger potent biological responses. For instance, hypoxia has been shown to support the maintenance and promote proliferation of regenerative stem and progenitor cells. Paradoxically, hypoxia also contributes to the development of pathological conditions including systemic inflammatory response, tumorigenesis, and cardiovascular disease, such as ischemic heart disease and pulmonary hypertension. Current methods to study cellular behavior in low levels of oxygen tension include hypoxia workstations and hypoxia chambers. These culture systems do not provide oxygen gradients that are found in vivo or precise control at the microscale. Microfluidic platforms have been developed to overcome the inherent limits of these current methods, including lack of spatial control, slow equilibration, and unachievable or difficult coupling to live-cell microscopy. The various applications made possible by microfluidic systems are the topic of this review. In order to understand how the microscale can be leveraged for oxygen control of cells and tissues within microfluidic systems, some background understanding of diffusion, solubility, and transport at the microscale will be presented in addition to a discussion on the methods for measuring the oxygen tension in microfluidic channels. Finally the various methods for oxygen control within microfluidic platforms will be discussed including devices that rely on diffusion from liquid or gas, utilizing on-or-off-chip mixers, leveraging cellular oxygen uptake to deplete the oxygen, relying on chemical reactions in channels to generate oxygen gradients in a device, and electrolytic reactions to produce oxygen directly on chip.


Assuntos
Técnicas de Cultura de Células/métodos , Técnicas Analíticas Microfluídicas/métodos , Oxigênio/análise , Oxigênio/metabolismo , Animais , Técnicas de Cultura de Células/instrumentação , Desenho de Equipamento , Humanos , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA