Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pediatr Nephrol ; 37(11): 2547-2557, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35237863

RESUMO

Pediatric chronic kidney disease (CKD) is characterized by many co-morbidities, including impaired growth and development, CKD-mineral and bone disorder, anemia, dysregulated iron metabolism, and cardiovascular disease. In pediatric CKD cohorts, higher circulating concentrations of fibroblast growth factor 23 (FGF23) are associated with some of these adverse clinical outcomes, including CKD progression and left ventricular hypertrophy. It is hypothesized that lowering FGF23 levels will reduce the risk of these events and improve clinical outcomes. Reducing FGF23 levels in CKD may be accomplished by targeting two key stimuli of FGF23 production-dietary phosphate absorption and iron deficiency. Ferric citrate is approved for use as an enteral phosphate binder and iron replacement product in adults with CKD. Clinical trials in adult CKD cohorts have also demonstrated that ferric citrate decreases circulating FGF23 concentrations. This review outlines the possible deleterious effects of excess FGF23 in CKD, summarizes data from the adult CKD clinical trials of ferric citrate, and presents the Ferric Citrate and Chronic Kidney Disease in Children (FIT4KiD) study, a randomized, placebo-controlled trial to evaluate the effects of ferric citrate on FGF23 in pediatric patients with CKD stages 3-4 (ClinicalTrials.gov Identifier NCT04741646).


Assuntos
Insuficiência Renal Crônica , Criança , Compostos Férricos , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Ferro/uso terapêutico , Minerais , Fosfatos , Ensaios Clínicos Controlados Aleatórios como Assunto , Insuficiência Renal Crônica/complicações
4.
Nutrients ; 15(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37432321

RESUMO

Cardiovascular disease is the leading cause of death in chronic kidney disease (CKD). Arginine, the endogenous precursor for nitric oxide synthesis, is produced in the kidneys. Arginine bioavailability contributes to endothelial and myocardial dysfunction in CKD. Plasma from 129X1/SvJ mice with and without CKD (5/6th nephrectomy), and banked plasma from children with and without CKD were analyzed for amino acids involved in arginine metabolism, ADMA, and arginase activity. Echocardiographic measures of myocardial function were compared with plasma analytes. In a separate experiment, a non-specific arginase inhibitor was administered to mice with and without CKD. Plasma citrulline and glutamine concentrations correlated with multiple measures of myocardial dysfunction. Plasma arginase activity was significantly increased in CKD mice at 16 weeks vs. 8 weeks (p = 0.002) and ventricular strain improved after arginase inhibition in mice with CKD (p = 0.03). In children on dialysis, arginase activity was significantly increased vs. healthy controls (p = 0.04). Increasing ADMA correlated with increasing RWT in children with CKD (r = 0.54; p = 0.003). In a mouse model, and children, with CKD, arginine dysregulation correlates with myocardial dysfunction.


Assuntos
Arginina , Insuficiência Renal Crônica , Animais , Camundongos , Arginase , Diálise Renal , Modelos Animais de Doenças , Citrulina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA