RESUMO
Protected areas are of paramount relevance to conserving wildlife and ecosystem contributions to people. Yet, their conservation success is increasingly threatened by human activities including habitat loss, climate change, pollution, and species overexploitation. Thus, understanding the underlying and proximate drivers of anthropogenic threats is urgently needed to improve protected areas' effectiveness, especially in the biodiversity-rich tropics. We addressed this issue by analyzing expert-provided data on long-term biodiversity change (last three decades) over 14 biosphere reserves from the Mesoamerican Biodiversity Hotspot. Using multivariate analyses and structural equation modeling, we tested the influence of major socioeconomic drivers (demographic, economic, and political factors), spatial indicators of human activities (agriculture expansion and road extension), and forest landscape modifications (forest loss and isolation) as drivers of biodiversity change. We uncovered a significant proliferation of disturbance-tolerant guilds and the loss or decline of disturbance-sensitive guilds within reserves causing a "winner and loser" species replacement over time. Guild change was directly related to forest spatial changes promoted by the expansion of agriculture and roads within reserves. High human population density and low nonfarming occupation were identified as the main underlying drivers of biodiversity change. Our findings suggest that to mitigate anthropogenic threats to biodiversity within biosphere reserves, fostering human population well-being via sustainable, nonfarming livelihood opportunities around reserves is imperative.
Assuntos
Biodiversidade , Ecossistema , Humanos , Animais , Agricultura , Animais Selvagens , Mudança ClimáticaRESUMO
BACKGROUND: Aeromonas virulence may not be entirely dependent on the host immune status. Pathophysiologic determinants of disease progression and severity remain unclear. METHODS: One hundred five patients with Aeromonas infections and 112 isolates were identified, their clinical presentations and outcomes analyzed, and their antimicrobial resistance (AMR) patterns assessed. Two isolates (A and B) from fatal cases of Aeromonas dhakensis bacteremia were characterized using whole genome sequence analysis. Virulence factor- and AMR-encoding genes from these isolates were compared with a well-characterized diarrheal isolate A. dhakensis SSU, and environmental isolate A. hydrophila ATCC_7966T. RESULTS: Skin and soft tissue infections, traumatic wound infections, sepsis, burns, and intraabdominal infections were common. Diabetes, malignancy, and cirrhosis were frequent comorbidities. Male sex, age ≥ 65 years, hospitalization, burns, and intensive care were associated with complicated disease. High rates of AMR to carbapenems and piperacillin-tazobactam were found. Treatment failure was observed in 25.7% of cases. Septic shock and hospital-acquired infections were predictors of treatment failure. All four isolates harbored assorted broad-spectrum AMR genes including blaOXA, ampC, cphA, and efflux pumps. Only clinical isolates possessed both polar and lateral flagellar genes, genes for various surface adhesion proteins, type 3- and -6 secretion systems and their effectors, and toxin genes, including exotoxin A. Both isolates A and B were resistant to colistin and harbored the mobile colistin resistance-3 (mcr-3) gene. CONCLUSIONS: Empirical therapy tailored to local Aeromonas antibiograms may facilitate more favorable outcomes, while advanced diagnostic methods may aid in identifying correct Aeromonas spp. of significant clinical importance.
RESUMO
Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer that is used worldwide and raises concerns because of its prevalence in the environment and potential toxicity. Herein, the capability of Fusarium culmorum to degrade a high concentration (3 g/L) of DEHP as the sole carbon and energy source in solid-state fermentation (SSF) was studied. Cultures grown on glucose were used as controls. The biodegradation of DEHP by F. culmorum reached 96.9% within 312 h. This fungus produced a 3-fold higher esterase activity in DEHP-supplemented cultures than in control cultures (1288.9 and 443.2 U/L, respectively). In DEHP-supplemented cultures, nine bands with esterase activity (24.6, 31.2, 34.2, 39.5, 42.8, 62.1, 74.5, 134.5, and 214.5 kDa) were observed by zymography, which were different from those in control cultures and from those previously reported for cultures grown in submerged fermentation. This is the first study to report the DEHP biodegradation pathway by a microorganism grown in SSF. The study findings uncovered a novel biodegradation strategy by which high concentrations of DEHP could be biodegraded using two alternative pathways simultaneously. F. culmorum has an outstanding capability to efficiently degrade DEHP by inducing esterase production, representing an ecologically promising alternative for the development of environmental biotechnologies, which might help mitigate the negative impacts of environmental contamination by this phthalate. KEY POINTS: ⢠F. culmorum has potential to tolerate and remove di(2-ethylhexyl) phthalate (DEHP) ⢠Solid-state fermentation is an efficient system for DEHP degradation by F. culmorum ⢠High concentrations of DEHP induce high levels of esterase production by F. culmorum.
Assuntos
Dietilexilftalato , Fusarium , Ácidos Ftálicos , Dietilexilftalato/metabolismo , Biodegradação Ambiental , Esterases/metabolismoRESUMO
This study analyzed the chemical composition of Cymbopogon citratus essential oil from Puebla, México, assessed its antioxidant activity, and evaluated in silico protein-compound interactions related to central nervous system (CNS) physiology. GC-MS analysis identified myrcene (8.76%), Z-geranial (27.58%), and E-geranial (38.62%) as the main components, with 45 other compounds present, which depends on the region and growing conditions. DPPH and Folin-Ciocalteu assays using the leaves extract show a promising antioxidant effect (EC50 = 48.5 µL EO/mL), reducing reactive oxygen species. The bioinformatic tool SwissTargetPrediction (STP) shows 10 proteins as potential targets associated with CNS physiology. Moreover, protein-protein interaction diagrams suggest that muscarinic and dopamine receptors are related to each other through a third party. Molecular docking reveals that Z-geranial has higher binding energy than M1 commercial blocker and blocks M2, but not M4 muscarinic acetylcholine receptors, whereas ß-pinene and myrcene block M1, M2, and M4 receptors. These actions may positively affect cardiovascular activity, memory, Alzheimer's disease, and schizophrenia. This study highlights the significance of understanding natural product interactions with physiological systems to uncover potential therapeutic agents and advanced knowledge on their benefits for human health.
RESUMO
An intricate regulatory network controls the expression of Salmonella virulence genes. The transcriptional regulator HilD plays a central role in this network by controlling the expression of tens of genes mainly required for intestinal colonization. Accordingly, the expression/activity of HilD is highly regulated by multiple factors, such as the SirA/BarA two-component system and the Hcp-like protein HilE. SirA/BarA positively regulates translation of hilD mRNA through a regulatory cascade involving the small RNAs CsrB and CsrC, and the RNA-binding protein CsrA, whereas HilE inhibits HilD activity by protein-protein interaction. In this study, we show that SirA/BarA also positively regulates translation of hilE mRNA through the same mentioned regulatory cascade. Thus, our results reveal a paradoxical regulation exerted by SirA/BarA-Csr on HilD, which involves simultaneous opposite effects, direct positive control and indirect negative control through HilE. This kind of regulation is called an incoherent type-1 feedforward loop (I1-FFL), which is a motif present in certain regulatory networks and represents a complex biological problem to decipher. Interestingly, our results, together with those from a previous study, indicate that HilE, the repressor component of the I1-FFL reported here (I1-FFLSirA/BarA-HilE-HilD), is required to reduce the growth cost imposed by the expression of the genes regulated by HilD. Moreover, we and others found that HilE is necessary for successful intestinal colonization by Salmonella. Thus, these findings support that I1-FFLSirA/BarA-HilE-HilD cooperates to control the precise amount and activity of HilD, for an appropriate balance between the growth cost and the virulence benefit generated by the expression of the genes induced by this regulator. I1-FFLSirA/BarA-HilE-HilD represents a complex regulatory I1-FFL that involves multiple regulators acting at distinct levels of gene expression, as well as showing different connections to the rest of the regulatory network governing Salmonella virulence.
Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Infecções por Salmonella/microbiologia , Salmonella typhimurium/genética , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/patogenicidade , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência , Fatores de Virulência/genéticaRESUMO
Universal congenital cytomegalovirus (cCMV) screening in saliva is increasingly recommended. The aim of our study was to correlate the performance of a point-of-care rapid molecular test with CMV real time PCR (CMV RT-PCR) detection, using saliva pool-testing in newborns under a universal screening strategy. Saliva swabs were prospectively collected from newborns < 21 days old and tested by Alethia-LAMP-CMV assay in pools of 5 samples. In positive pools, subjects were tested individually and by saliva and urine CMV RT-PCR. A subset of negative pools were studied with both techniques and viral loads in whole blood were determined in positive patients. From 1,642 newborns included in 328 pools, 8 were confirmed by urine CMV RT-PCR, (cCMV prevalence 0,49%). The PPA and NNA of the pooled saliva Alethia-LAMP-CMV testing were 87,5% and 99,8% with a negative and positive predictive value of 99,9% and 77,7%, respectively. Two false positives were detected (0,12%). A subset of 17 negative pools (85 samples), studied by saliva CMV RT-PCR, showed 100% concordance. Conclusion: CMV pool-testing using a rapid molecular test in saliva proved feasible when compared to PCR gold standards. This strategy could improve cost-effectiveness for cCMV universal neonatal screening, based on the low prevalence of the infection and could be a more affordable approach in less developed regions with reduced detection capacity. What is Known: ⢠cCMV is the most frequent congenital infection and a leading nongenetic cause of sensorineural hearing loss and brain disease. ⢠Universal screening could allow early detection of congenitally infected infants, improving clinical outcome. ⢠Saliva PCR is the preferred and non-invasive test for newborn cCMV screening. What is New: ⢠The feasibility of a universal cCMV screening by pool-testing in saliva using a rapid test in pools of 5 samples. ⢠PPA and NPA were 87,5 and 99,8% compared to CMV PCR in urine. ⢠This strategy could be relevant specially in LMIC where detection capacity is reduced and could improve cost-effectiveness. ⢠cCMV prevalence in our center was 0,49%.
Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Lactente , Humanos , Recém-Nascido , Citomegalovirus/genética , Saliva , Infecções por Citomegalovirus/diagnóstico , Triagem Neonatal/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodosRESUMO
Pulmonary arterial hypertension is characterized by increased mean pulmonary arterial pressure, resistance, and pathological remodeling of pulmonary arteries. Calcium entry from the extracellular to the intracellular space through voltage-dependent and -independent channels play a major role in the increase of contractility of pulmonary arteries and in the loss of regulation of the proliferative behavior of the cells from the different layers of the pulmonary arterial wall. In doing so, these channels contribute to enhanced vasoconstriction of pulmonary arteries and their pathological remodeling. This review aims to summarize the evidence obtained from animal and cellular models regarding the involvement of the main plasma membrane calcium channels in these key pathophysiological processes for pulmonary arterial hypertension, discussing the potential value as pharmacological targets for therapies in the present and the future.
Assuntos
Canais de Cálcio , Hipertensão Pulmonar , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/fisiopatologia , Canais de Cálcio/fisiologia , Canais de Cálcio/efeitos dos fármacos , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Bloqueadores dos Canais de Cálcio/farmacologia , Transdução de Sinais/efeitos dos fármacos , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologiaRESUMO
One important event for the divergence of Salmonella from Escherichia coli was the acquisition by horizontal transfer of the Salmonella pathogenicity island 1 (SPI-1), containing genes required for the invasion of host cells by Salmonella. HilD is an AraC-like transcriptional regulator in SPI-1 that induces the expression of the SPI-1 and many other acquired virulence genes located in other genomic regions of Salmonella. Additionally, HilD has been shown to positively control the expression of some ancestral genes (also present in E. coli and other bacteria), including phoH. In this study, we determined that both the gain of HilD and cis-regulatory evolution led to the integration of the phoH gene into the HilD regulon. Our results indicate that a HilD-binding sequence was generated in the regulatory region of the S. enterica serovar Typhimurium phoH gene, which mediates the activation of promoter 1 of this gene under SPI-1-inducing conditions. Furthermore, we found that repression by H-NS, a histone-like protein, was also adapted on the S. Typhimurium phoH gene and that HilD activates the expression of this gene in part by antagonizing H-NS. Additionally, our results revealed that the expression of the S. Typhmurium phoH gene is also activated in response to low phosphate but independently of the PhoB/R two-component system, known to regulate the E. coli phoH gene in response to low phosphate. Thus, our results indicate that cis-regulatory evolution has played a role in the expansion of the HilD regulon and illustrate the phenomenon of differential regulation of ortholog genes. IMPORTANCE Two mechanisms mediating differentiation of bacteria are well known: acquisition of genes by horizontal transfer events and mutations in coding DNA sequences. In this study, we found that the phoH ancestral gene is differentially regulated between Salmonella Typhimurium and Escherichia coli, two closely related bacterial species. Our results indicate that this differential regulation was generated by mutations in the regulatory sequence of the S. Typhimurium phoH gene and by the acquisition by S. Typhimurium of foreign DNA encoding the transcriptional regulator HilD. Thus, our results, together with those from an increasing number of studies, indicate that cis-regulatory evolution can lead to the rewiring and reprogramming of transcriptional regulation, which also plays an important role in the divergence of bacteria through time.
Assuntos
Regulação Bacteriana da Expressão Gênica , Salmonella typhimurium , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fosfatos/metabolismo , Salmonella typhimurium/metabolismo , Sorogrupo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Neurocysticercosis (NCC) is an important cause of neurological disease worldwide, including imported cases in nonendemic countries. PURPOSE OF REVIEW: The purpose of this review is to update information on diagnosis, management, and prevention of neurocysticercosis. RECENT FINDINGS: WHO and Infectious Diseases Society of America/American Society of Tropical Medicine and Hygiene guidelines emphasize the importance of corticosteroids and antiparasitic drugs for viable parenchymal disease and single enhancing lesions. Subarachnoid NCC is associated with a high fatality rate unless optimally treated. Advances in subarachnoid NCC include use of prolonged antiparasitic and anti-inflammatory courses and the increasing use of antigen-detection and quantitative PCR assays in diagnosis and follow-up. Emerging data support the safety and efficacy of minimally invasive surgery in ventricular cases. Calcified neurocysticercosis continues to be associated with a high burden of disease. Field studies are demonstrating the feasibility of eradication using a combination of mass chemotherapy for human tapeworms and vaccination/treatment of porcine cysticercosis. SUMMARY: NCC remains an important and challenging cause of neurological disease with significant morbidity despite advances in treatment and prevention.
Assuntos
Neurocisticercose , Animais , Anti-Inflamatórios/uso terapêutico , Antiparasitários/uso terapêutico , Humanos , Higiene , Neurocisticercose/diagnóstico , Neurocisticercose/tratamento farmacológico , Neurocisticercose/prevenção & controle , Espaço Subaracnóideo/patologia , SuínosRESUMO
Pulmonary arterial hypertension of the neonate (PAHN) is a pathophysiological condition characterized by maladaptive pulmonary vascular remodeling and abnormal contractile reactivity. This is a multifactorial syndrome with chronic hypoxia and oxidative stress as main etiological drivers, and with limited effectiveness in therapeutic approaches. Melatonin is a neurohormone with antioxidant and vasodilator properties at the pulmonary level. Therefore, this study aims to test whether a postnatal treatment with melatonin during the neonatal period improves in a long-lasting manner the clinical condition of PAHN. Ten newborn lambs gestated and born at 3600 m were used in this study, five received vehicle and five received melatonin in daily doses of 1 mg kg-1 for the first 3 weeks of life. After 1 week of treatment completion, lung tissue and small pulmonary arteries (SPA) were collected for wire myography, molecular biology, and morphostructural analyses. Melatonin decreased pulmonary arterial pressure the first 4 days of treatment. At 1 month old, melatonin decreased the contractile response to the vasoconstrictors K+ , TX2 , and ET-1. Further, melatonin increased the endothelium-dependent and muscle-dependent vasodilation of SPA. Finally, the treatment decreased pulmonary oxidative stress by inducing antioxidant enzymes and diminishing pro-oxidant sources. In conclusion, melatonin improved vascular reactivity and oxidative stress at the pulmonary level in PAHN lambs gestated and born in chronic hypoxia.
Assuntos
Pressão Arterial/efeitos dos fármacos , Hipertensão Pulmonar/fisiopatologia , Hipóxia/metabolismo , Melatonina , Estresse Oxidativo/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Pulmão/irrigação sanguínea , Pulmão/efeitos dos fármacos , Melatonina/administração & dosagem , Melatonina/farmacocinética , Melatonina/farmacologia , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Ovinos , Vasodilatadores/administração & dosagem , Vasodilatadores/farmacocinética , Vasodilatadores/farmacologiaRESUMO
A 40-year-old woman presented with a productive cough and shortness of breath that limited her regular activities. Her past medical history was relevant for hypertension since 2016; it is well controlled and treated with enalapril 5 mg twice daily. She also revealed a past wood smoke exposure of 2 hours per day for 10 years during her childhood. A chest computed tomography (CT) scan was performed which showed a 30-mm lung nodule in the lower left lobe and mediastinal and ipsilateral pleural thickening with moderate pleural effusion and several bilateral lung metastases.
Assuntos
Acrilamidas/uso terapêutico , Compostos de Anilina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Neoplasias Pulmonares/diagnóstico , Mutação , Adulto , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundário , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/genética , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Resultado do TratamentoRESUMO
Nitric oxide (NO) is the main vasodilator agent that drives the rapid decrease of pulmonary vascular resistance for the respiratory onset during the fetal to neonatal transition. Nevertheless, the enhanced NO generation by the neonatal pulmonary arterial endothelium does not prevent development of hypoxic pulmonary hypertension in species without an evolutionary story at high altitude. Therefore, this study aims to describe the limits of the NO function at high-altitude during neonatal life in the sheep as an animal model without tolerance to perinatal hypoxia. We studied the effect of blockade of NO synthesis with l-NAME in the cardiopulmonary response of lowland (580â¯m) and highland (3600â¯m) newborn lambs basally and under an episode of acute hypoxia. We also determined the pulmonary expression of proteins that mediate the actions of the NO vasodilator pathway in the pulmonary vasoactive tone and remodeling. We observed an enhanced nitrergic function in highland lambs under basal conditions, evidenced as a markedly greater increase in basal mean pulmonary arterial pressure (mPAP) and resistance (PVR) under blockade of NO synthesis. Further, acute hypoxic challenge in lowland lambs infused with l-NAME markedly increased their mPAP and PVR to values greater than baseline, whilst in highland animals under NO synthesis blockade, these variables did not show additional increase in response to low PO2. Highland animals showed increased pulmonary RhoA expression, decreased PSer188-RhoA fraction, increased PSer311-p65-NFÒß fraction and up-regulated smooth muscle α-actin, relative to lowland controls. Taken together our data suggest that NO-mediated vasodilation is important to keep a low pulmonary vascular resistance under basal conditions and acute hypoxia at low-altitude. At high-altitude, the enhanced nitrergic signaling partially prevents excessive pulmonary hypertension but does not protect against acute hypoxia. The decreased vasodilator efficacy of nitrergic tone in high altitude lambs could be in part due to increased RhoA signaling that opposes to NO action in the hypoxic pulmonary circulation.
Assuntos
Doença da Altitude/fisiopatologia , Altitude , Óxido Nítrico/metabolismo , Circulação Pulmonar/fisiologia , Transdução de Sinais/fisiologia , Animais , Animais Recém-Nascidos , Pressão Arterial/fisiologia , Feminino , NG-Nitroarginina Metil Éster/farmacologia , Gravidez , Ovinos , Regulação para Cima , Vasodilatação/fisiologiaRESUMO
We quantitatively investigate lithographic patterning of a thiol-anchored self-assembled monolayer (SAM) of photocleavable o-nitrobenzyl ligands on gold through a multi-photon absorption process at 1.7 eV (730 nm wavelength). The photocleaving rate increases faster than the square of the incident light intensity, indicating a process more complex than simple two-photon absorption. We tentatively ascribe this observation to two-photon absorption that triggers the formation of a long-lived intermediate aci-nitro species whose decomposition yield is partially determined either by absorption of additional photons or by a local temperature that is elevated by the incident light. At the highest light intensities, thermal processes compete with photoactivation and lead to damage of the SAM. The threshold is high enough that this destructive process can largely be avoided, even while power densities are kept sufficiently large that complete photoactivation takes place on time scales of tens of seconds to a few minutes. This means that this type of ligand can be activated at visible and near infrared wavelengths where plasmonic resonances can easily be engineered in metal nanostructures, even though their single-photon reactivity at these wavelengths is negligible. This will allow selective functionalization of plasmon hotspots, which in addition to high resolution lithographic applications would be of benefit to applications such as Surface Enhanced Raman Spectroscopy and plasmonic photocatalysis as well as directed bottom-up nanoassembly.
RESUMO
Omics technologies have revolutionised fundamental and medical research. Oncology is perhaps the field where these technologies have been most rapidly adopted and where they have had their biggest impact, dramatically transforming clinical practice guidelines over a very short period of time. Along with this transformation has come an even larger array of technologies, tools and jargon, that make following the most recent developments in the field a truly daunting task for those not involved in it. This chapter is intended to provide a general overview of evolving topics in oncology research in the era of big data analysis and precision medicine, with a specific focus on the use of tumour biomarkers, tumour biomarker tests, targeted drugs and the changing landscape of clinical trial designs.
Assuntos
Oncologia , Neoplasias , Biomarcadores Tumorais , Ensaios Clínicos como Assunto , Humanos , Oncologia/tendências , Medicina de Precisão/tendênciasRESUMO
BACKGROUND: Living above 2,500 meters in hypobaric conditions induces pulmonary arterial hypertension of the neonate (PAHN), a syndrome whose main features are: pathological remodeling of the pulmonary vessels, abnormal vascular reactivity and increased oxidative stress. Melatonin could have pulmonary antioxidant, anti-remodeling and vasodilating properties for this condition. AIM: To determine the effect of melatonin at the transcript level of prostanoid pathways in the lung of neonatal lambs gestated and born under hypobaric hypoxia. MATERIAL AND METHODS: Vehicle (1.4% of ethanol, n = 6) or melatonin (1 mg * kg1, n = 5) were administered from the postnatal day 4 to 21 to lambs gestated and born at 3,600 meters above sea level. After one week of treatment completion, lung tissue was obtained, the transcript and protein levels of prostanoid synthases and receptors were assessed by RT-PCR and Western Blot. RESULTS: Melatonin induced the expression of prostacyclin synthase transcript and increased protein expression of the prostacyclin receptor. In addition, the treatment decreased the expression of transcript and protein of cyclooxygenase-2, without changes in the expression of the prostanoid vasoconstrictor (thromboxane) pathway. CONCLUSIONS: Postnatal treatment with melatonin increases the expression of the prostacyclin-vasodilator pathway without changing the vasoconstrictor thromboxane pathway. Further, the decreased COX-2 induced by melatonin could be an index of lesser oxidative stress and inflammation in the lung.
Assuntos
Antioxidantes/farmacologia , Hipertensão Pulmonar/tratamento farmacológico , Melatonina/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Prostaglandinas/metabolismo , Animais , Animais Recém-Nascidos , Hipertensão Pulmonar/metabolismo , Hipóxia , Artéria Pulmonar/efeitos dos fármacos , OvinosRESUMO
KEY POINTS: Perinatal hypoxia causes pulmonary hypertension in neonates, including humans. However, in species adapted to hypoxia, such as the llama, there is protection against pulmonary hypertension. Nitric oxide (NO) is a vasodilatator with an established role in the cardiopulmonary system of many species, but its function in the hypoxic pulmonary vasoconstrictor response in the newborn llama is unknown. Therefore, we studied the role of NO in the cardiopulmonary responses to acute hypoxia in high- and lowland newborn llamas. We show that high- compared to lowland newborn llamas have a reduced pulmonary vasoconstrictor response to acute hypoxia. Protection against excessive pulmonary vasoconstriction in the highland llama is mediated via enhancement of NO pathways, including increased MYPT1 and reduced ROCK expression as well as Ca2+ desensitization. Blunting of pulmonary hypertensive responses to hypoxia through enhanced NO pathways may be an adaptive mechanism to withstand life at high altitude in the newborn llama. ABSTRACT: Llamas are born in the Alto Andino with protection against pulmonary hypertension. The physiology underlying protection against pulmonary vasoconstrictor responses to acute hypoxia in highland species is unknown. We determined the role of nitric oxide (NO) in the cardiopulmonary responses to acute hypoxia in high- and lowland newborn llamas. The cardiopulmonary function of newborn llamas born at low (580 m) or high altitude (3600 m) was studied under acute hypoxia, with and without NO blockade. In pulmonary arteries, we measured the reactivity to potassium and sodium nitroprusside (SNP), and in lung we determined the content of cGMP and the expression of the NO-related proteins: BKCa, PDE5, PSer92-PDE5, PKG-1, ROCK1 and 2, MYPT1, PSer695-MYPT1, PThr696-MYPT1, MLC20 and PSer19-MLC20. Pulmonary vascular remodelling was evaluated by morphometry and based on α-actin expression. High- compared to lowland newborn llamas showed lower in vivo pulmonary arterial pressor responses to acute hypoxia. This protection involved enhanced NO function, as NO blockade reverted the effect and the pulmonary arterial dilatator response to SNP was significantly enhanced in highland neonates. The pulmonary expression of ROCK2 and the phosphorylation of MLC20 were lower in high-altitude llamas. Conversely, MYPT1 was up-regulated whilst PSer695-MYPT1 and PThr695-MYPT1 did not change. Enhanced NO-dependent mechanisms were insufficient to prevent pulmonary arterial remodelling. Combined, the data strongly support that in the highland newborn llama reduced ROCK, increased MYPT1 expression and Ca2+ desensitization in pulmonary tissue allow an enhanced NO biology to limit hypoxic pulmonary constrictor responses. Blunting of hypoxic pulmonary hypertensive responses may be an adaptive mechanism to life at high altitude.
Assuntos
Hipóxia/fisiopatologia , Óxido Nítrico/fisiologia , Altitude , Animais , Animais Recém-Nascidos , Pressão Arterial , Camelídeos Americanos , Frequência Cardíaca , Pulmão/fisiologia , Artéria Pulmonar/fisiologia , Circulação Pulmonar , VasoconstriçãoRESUMO
High-altitude hypoxia causes intrauterine growth restriction and cardiovascular programming. However, adult humans and animals that have evolved at altitude show certain protection against the effects of chronic hypoxia. Whether the highland fetus shows similar protection against high altitude gestation is unclear. We tested the hypothesis that high-altitude fetal sheep have evolved cardiovascular compensatory mechanisms to withstand chronic hypoxia that are different from lowland sheep. We studied seven high-altitude (HA; 3600 m) and eight low-altitude (LA; 520 m) pregnant sheep at â¼90% gestation. Pregnant ewes and fetuses were instrumented for cardiovascular investigation. A three-period experimental protocol was performed in vivo: 30 min of basal, 1 h of acute superimposed hypoxia (â¼10% O2) and 30 min of recovery. Further, we determined ex vivo fetal cerebral and femoral arterial function. HA pregnancy led to chronic fetal hypoxia, growth restriction and altered cardiovascular function. During acute superimposed hypoxia, LA fetuses redistributed blood flow favouring the brain, heart and adrenals, whereas HA fetuses showed a blunted cardiovascular response. Importantly, HA fetuses have a marked reduction in umbilical blood flow versus LA. Isolated cerebral arteries from HA fetuses showed a higher contractile capacity but a diminished response to catecholamines. In contrast, femoral arteries from HA fetuses showed decreased contractile capacity and increased adrenergic contractility. The blunting of the cardiovascular responses to hypoxia in fetuses raised in the Alto Andino may indicate a change in control strategy triggered by chronic hypoxia, switching towards compensatory mechanisms that are more cost-effective in terms of oxygen uptake.
Assuntos
Altitude , Circulação Coronária , Coração Fetal/fisiopatologia , Hipóxia Fetal/fisiopatologia , Circulação Placentária , Glândulas Suprarrenais/irrigação sanguínea , Animais , Circulação Cerebrovascular , Feminino , Gravidez , Ovinos , VasoconstriçãoRESUMO
Calcium signaling through store operated channels (SOC) is involved in hypoxic pulmonary hypertension. We determined whether a treatment with 2-aminoethyldiphenylborinate (2-APB), a compound with SOC blocker activity, reduces pulmonary hypertension and vascular remodeling. Twelve newborn lambs exposed to perinatal chronic hypoxia were studied, 6 of them received a 2-APB treatment and the other 6 received vehicle treatment, for 10 days in both cases. Throughout this period, we recorded cardiopulmonary variables and on day 11 we evaluated the response to an acute hypoxic challenge. Additionally, we assessed the vasoconstrictor and vasodilator function in isolated pulmonary arteries as well as their remodeling in lung slices. 2-APB reduced pulmonary arterial pressure at the third and tenth days, cardiac output between the fourth and eighth days, and pulmonary vascular resistance at the tenth day of treatment. The pulmonary vasoconstrictor response to acute hypoxia was reduced by the end of treatment. 2-APB also decreased maximal vasoconstrictor response to the thromboxane mimetic U46619 and endothelin-1 and increased maximal relaxation to 8-Br-cGMP. The maximal relaxation and potency to phosphodiesterase-5 and Rho-kinase inhibition with sildenafil and fasudil respectively, were also increased. Finally, 2-APB reduced the medial and adventitial layers' thickness, the expression of α-actin and the percentage of Ki67+ nuclei of small pulmonary arteries. Taken together, our results indicate that 2-APB reduces pulmonary hypertension, vasoconstrictor responses and pathological remodeling in pulmonary hypertensive lambs. We conclude that SOC targeting may be a useful strategy for the treatment of neonatal pulmonary hypertension, however, further testing of specific blockers is needed.
RESUMO
Exposure to high-altitude chronic hypoxia during pregnancy may cause pulmonary hypertension in neonates, as a result of vasoconstriction and vascular remodeling. We hypothesized that susceptibility to pulmonary hypertension, due to an augmented expression and activity of the RhoA/Rho-kinase (ROCK) pathway in these neonates, can be reduced by daily administration of fasudil, a ROCK inhibitor. We studied 10 highland newborn lambs with conception, gestation, and birth at 3,600 m in Putre, Chile. Five highland controls (HLC) were compared with 5 highland lambs treated with fasudil (HL-FAS; 3 mg·kg(-1)·day(-1) iv for 10 days). Ten lowland controls were studied in Lluta (50 m; LLC). During the 10 days of fasudil daily administration, the drug decreased pulmonary arterial pressure (PAP) and resistance (PVR), basally and during a superimposed episode of acute hypoxia. HL-FAS small pulmonary arteries showed diminished muscular area and a reduced contractile response to the thromboxane analog U46619 compared with HLC. Hypoxia, but not fasudil, changed the protein expression pattern of the RhoA/ROCKII pathway. Moreover, HL-FAS lungs expressed less pMYPT1(T850) and pMYPT1T(696) than HLC, with a potential increase of the myosin light chain phosphatase activity. Finally, hypoxia induced RhoA, ROCKII, and PKG mRNA expression in PASMCs of HLC, but fasudil reduced them (HL-FAS) similarly to LLC. We conclude that fasudil decreases the function of the RhoA/ROCK pathway, reducing the PAP and PVR in chronically hypoxic highland neonatal lambs. The inhibition of ROCKs by fasudil may offer a possible therapeutic tool for the pulmonary hypertension of the neonates.
Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Doença da Altitude/metabolismo , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/prevenção & controle , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/administração & dosagem , Doença da Altitude/complicações , Doença da Altitude/tratamento farmacológico , Animais , Animais Recém-Nascidos , Humanos , Hipertensão Pulmonar/etiologia , Recém-Nascido , Doenças do Recém-Nascido/metabolismo , Doenças do Recém-Nascido/prevenção & controle , Inibidores de Proteínas Quinases/administração & dosagem , Ovinos , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento , Quinases Associadas a rho/antagonistas & inibidoresRESUMO
BACKGROUND: Previous population-based studies have demonstrated an association between metformin use and improved survival among diabetic patients with cancer. We sought to analyze the effects of diabetes and its treatment in terms of the survival of patients with lung cancer. METHODS: Overall, 1106 patients with non-small cell lung cancer (94.3 % with stage IV disease) were included. The outcomes were compared between the patients with (n = 186) and without diabetes (n = 920). The characteristics associated with antidiabetic treatment and proper glycemic control (defined as a mean plasma glucose <130 mg/dL) were examined at diagnosis. The overall survivals (OSs) of the different patient populations were analyzed using Kaplan-Meier curves, and a multivariate Cox proportional hazard model was used to determine the influences of the patient and tumor characteristics on survival. RESULTS: The OS for the entire population was 18.3 months (95 % CI 16.1-20.4). There was no difference in the OSs of the diabetic and non-diabetic patients (18.5 vs 16.4 months, p = 0.62). The diabetic patients taking metformin exhibited a superior OS than did those on other antidiabetic treatments (25.6 vs 13.2 months, p = 0.017). Those with proper glycemic control had a better OS than did those without proper glycemic control and the non-diabetics (40.5 vs 13.2 and 18.5 months, respectively, p < 0.001). Both the use of metformin (HR 0.53, p < 0.0001 and HR 0.57, p = 0.017, respectively) and proper glycemic control (HR 0.49, p < 0.0001 and HR 0.40, p = 0.002, respectively) were significant protective factors in all and only diabetic patients, respectively. CONCLUSIONS: The diabetic patients with proper glycemic control exhibited a better OS than did those without proper glycemic control and even exhibited a better OS than did the patients without diabetes mellitus. Metformin use was independently associated with a better OS.