Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Trends Immunol ; 42(8): 654-657, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34246558

RESUMO

Broadly neutralizing antibodies against rapidly evolving viruses (e.g., HIV-1 and influenza virus), often manifest antigen-binding promiscuity. Based on a recent study, we hypothesize on the significance of antibody polyreactivity in neutralization of rapidly evolving viruses. We propose that polyreactivity contributes to toleration of viral variants and shortens the time for generating neutralizing antibodies.


Assuntos
HIV-1 , Orthomyxoviridae , Imunidade Adaptativa , Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Anti-HIV , Humanos
2.
Br J Cancer ; 124(8): 1398-1410, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33531687

RESUMO

BACKGROUND: Cancer recurrence is a serious problem in breast cancer (BC) patients, and immunogenic cell death (ICD) has been proposed as a strategy to overcome this recurrence. IMMUNEPOTENT CRP (ICRP) acts as an immunomodulator and can be cytotoxic to cancer cells. Thus, we evaluated if ICRP induces ICD in BC cells. METHODS: Immunogenicity of ICRP-induced cell death was evaluated in vitro, analysing the principal biochemical characteristics of ICD in MCF-7, MDA-MB-231 and 4T1 cells. Ex vivo, we assessed the ability of killed cancer cells (KCC) obtained from ICRP-treated 4T1 cells (ICRP-KCC) to induce DC maturation, T-cell priming and T-cell-mediated cancer cytotoxicity. In vivo, we evaluated tumour establishment and antitumour immune memory after prophylactic ICRP-KCC vaccination in BALB/c mice. RESULTS: ICRP induced caspase-independent, ROS-dependent cell death, autophagosome formation, P-eIF2α, chaperone protein exposure, CD47 loss, ATP and HMBG1 release in BC cells. Additionally, ICRP-KCC promoted DC maturation, which triggered T-cell priming and cancer cytotoxicity. Prophylactic vaccination with ICRP-KCC prevented tumour establishment and induced long-term antitumour memory in BALB/c mice, involving DC maturation in lymph nodes, CD8+ T-cell augmentation in lymph nodes, peripheral blood and tumour site and ex vivo tumour-specific cytotoxicity by splenocytes. CONCLUSIONS: ICRP induces ICD in BC cells, leading to long-term antitumour memory.


Assuntos
Neoplasias da Mama/prevenção & controle , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/metabolismo , Recidiva Local de Neoplasia/prevenção & controle , Fator de Transferência/administração & dosagem , Animais , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Morte Celular Imunogênica , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Recidiva Local de Neoplasia/imunologia , Fator de Transferência/farmacologia , Vacinação , Ensaios Antitumorais Modelo de Xenoenxerto
3.
BMC Cancer ; 20(1): 647, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32660440

RESUMO

BACKGROUND: IMMUNEPOTENT CRP (ICRP) can be cytotoxic to cancer cell lines. However, its widespread use in cancer patients has been limited by the absence of conclusive data on the molecular mechanism of its action. Here, we evaluated the mechanism of cell death induced by ICRP in HeLa and MCF-7 cells. METHODS: Cell death, cell cycle, mitochondrial membrane potential and ROS production were evaluated in HeLa and MCF-7 cell lines after ICRP treatment. Caspase-dependence and ROS-dependence were evaluated using QVD.oph and NAC pre-treatment in cell death analysis. DAMPs release, ER stress (eIF2-α phosphorylation) and autophagosome formation were analyzed as well. Additionally, the role of autophagosomes in cell death induced by ICRP was evaluated using SP-1 pre-treatment in cell death in HeLa and MCF-7 cells. RESULTS: ICRP induces cell death, reaching CC50 at 1.25 U/mL and 1.5 U/mL in HeLa and MCF-7 cells, respectively. Loss of mitochondrial membrane potential, ROS production and cell cycle arrest were observed after ICRP CC50 treatment in both cell lines, inducing the same mechanism, a type of cell death independent of caspases, relying on ROS production. Additionally, ICRP-induced cell death involves features of immunogenic cell death such as P-eIF2α and CRT exposure, as well as, ATP and HMGB1 release. Furthermore, ICRP induces ROS-dependent autophagosome formation that acts as a pro-survival mechanism. CONCLUSIONS: ICRP induces a non-apoptotic cell death that requires an oxidative stress to take place, involving mitochondrial damage, ROS-dependent autophagosome formation, ER stress and DAMPs' release. These data indicate that ICRP could work together with classic apoptotic inductors to attack cancer cells from different mechanisms, and that ICRP-induced cell death might activate an immune response against cancer cells.


Assuntos
Alarminas/metabolismo , Antineoplásicos/farmacologia , Autofagossomos , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Fator de Transferência/administração & dosagem , Animais , Apoptose , Bovinos , Ciclo Celular , Proliferação de Células , Células HeLa , Humanos , Células MCF-7 , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neoplasias/patologia , Estresse Oxidativo
4.
BMC Cancer ; 18(1): 13, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298674

RESUMO

BACKGROUND: Regulated cell death (RCD) is a mechanism by which the cell activates its own machinery to self-destruct. RCD is important for the maintenance of tissue homeostasis and its deregulation is involved in diseases such as cervical cancer. IMMUNEPOTENT CRP (I-CRP) is a dialyzable bovine leukocyte extract that contains transfer factors and acts as an immunomodulator, and can be cytotoxic to cancer cell lines and reduce tumor burden in vivo. Although I-CRP has shown to improve or modulate immune response in inflammation, infectious diseases and cancer, its widespread use has been limited by the absence of conclusive data on the molecular mechanism of its action. METHODS: In this study we analyzed the mechanism by which I-CRP induces cytotoxicity in HeLa cells. We assessed cell viability, cell death, cell cycle, nuclear morphology and DNA integrity, caspase dependence and activity, mitochondrial membrane potential, and reactive oxygen species production. RESULTS: I-CRP diminishes cell viability in HeLa cells through a RCD pathway and induces cell cycle arrest in the G2/M phase. We show that the I-CRP induces caspase activation but cell death induction is independent of caspases, as observed by the use of a pan-caspase inhibitor, which blocked caspase activity but not cell death. Moreover, we show that I-CRP induces DNA alterations, loss of mitochondrial membrane potential, and production of reactive-oxygen species. Finally, pretreatment with N-acetyl-L-cysteine (NAC), a ROS scavenger, prevented both ROS generation and cell death induced by I-CRP. CONCLUSIONS: Our data indicate that I-CRP treatment induced cell cycle arrest in G2/M phase, mitochondrial damage, and ROS-mediated caspase-independent cell death in HeLa cells. This work opens the way to the elucidation of a more detailed cell death pathway that could potentially work in conjunction with caspase-dependent cell death induced by classical chemotherapies.


Assuntos
Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Proteína C-Reativa/administração & dosagem , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias do Colo do Útero/patologia , Animais , Proteína C-Reativa/imunologia , Bovinos , Extratos Celulares/administração & dosagem , Feminino , Células HeLa , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo
5.
Thromb Haemost ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950594

RESUMO

The binding promiscuity of proteins defines their ability to indiscriminately bind multiple unrelated molecules. Binding promiscuity is implicated, at least in part, in the off-target reactivity, non-specific biodistribution, immunogenicity and/or short half-life of potentially efficacious protein drugs, thus affecting their clinical use. In this review, we discuss the current evidence for the binding promiscuity of factor VIII (FVIII), a protein used for the treatment of hemophilia A, which cumulates poor pharmacokinetics, and elevated immunogenicity. We summarize the different canonical and non-canonical molecular interactions that FVIII may establish in the circulation and that could be responsible for its therapeutic liabilities. We also provide information suggesting that the FVIII light chain, and notably its C1 and C2 domains, could play an important role in binding promiscuity. We believe that the knowledge accumulated over years of FVIII usage could be exploited for the development of tools that predict drug efficacy and toxicity and open a mutational space to reduce the binding promiscuity of newly generated protein drugs while conserving their therapeutic efficacy.

6.
EXCLI J ; 22: 352-366, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223080

RESUMO

IMMUNEPOTENT CRP (ICRP) is an immunotherapy that induces cell death in cancer cell lines. However, the molecular mechanisms of death are not completely elucidated. Here, we evaluated the implication of intracellular Ca2+ augmentation in the cell death induced by ICRP on T-ALL and breast cancer cell lines. Cell death induction and the molecular characteristics of cell death were evaluated in T-ALL and breast cancer cell lines by assessing autophagosome formation, ROS production, loss of mitochondrial membrane potential, ER stress and intracellular Ca2+ levels. We assessed the involvement of extracellular Ca2+, and the implication of the ER-receptors, IP3R and RyR, in the cell death induced by ICRP, by using an extracellular calcium chelator and pharmacological inhibitors. Our results show that ICRP increases intracellular Ca2+ levels as the first step of the cell death mechanism that provokes ROS production and loss of mitochondrial membrane potential. In addition, blocking the IP3 and ryanodine receptors inhibited ER-Ca2+ release, ROS production and ICRP-induced cell death. Taken together our results demonstrate that ICRP triggers intracellular Ca2+-increase leading to different regulated cell death modalities in T-ALL and breast cancer cell lines. See also Figure 1(Fig. 1).

7.
J Thromb Haemost ; 21(9): 2405-2417, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37271431

RESUMO

BACKGROUND: Transplacental delivery of maternal immunoglobulin G (IgG) provides humoral protection during the first months of life until the newborn's immune system reaches maturity. The maternofetal interface has been exploited therapeutically to replace missing enzymes in the fetus, as shown in experimental mucopolysaccharidoses, or to shape adaptive immune repertoires during fetal development and induce tolerance to self-antigens or immunogenic therapeutic molecules. OBJECTIVES: To investigate whether proteins that are administered to pregnant mice or endogenously present in their circulation may be delivered through the placenta. METHODS: We engineered monovalent immunoglobulin G (FabFc) specific for different domains of human factor VIII (FVIII), a therapeutically relevant model antigen. FabFc was injected with exogenous FVIII into pregnant severe hemophilia A mice or pregnant mice expressing human FVIII following AAV8-mediated gene therapy. FabFc and FVIII were detected in the pregnant mice and/or fetuses by enzyme-linked immunosorbent assay and immunohistochemistry. RESULTS: Administration of FabFc to pregnant mice allowed the maternofetal delivery of FVIII in a FcRn-dependent manner. FVIII antigen levels achieved in the fetuses represented 10% of normal plasma levels in the human. We identified antigen/FabFc complex stability, antigen size, and shielding of promiscuous protein patches as key parameters to foster optimal antigen delivery. CONCLUSION: Our results pave the way toward the development of novel strategies for the in utero delivery of endogenous maternal proteins to replace genetically deficient fetal proteins or to educate the immune system and favor active immune tolerance upon protein encounter later in life.


Assuntos
Hemofilia A , Imunoglobulina G , Gravidez , Feminino , Camundongos , Humanos , Animais , Fator VIII , Hemofilia A/genética , Hemofilia A/terapia , Placenta , Terapia Genética , Tolerância Imunológica
8.
Protein Sci ; 31(11): e4447, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36305765

RESUMO

SARS-CoV-2 infects cells by attachment to its receptor-the angiotensin converting enzyme 2 (ACE2). Regardless of the wealth of structural data, little is known about the physicochemical mechanism of interactions of the viral spike (S) protein with ACE2 and how this mechanism has evolved during the pandemic. Here, we applied experimental and computational approaches to characterize the molecular interaction of S proteins from SARS-CoV-2 variants of concern (VOC). Data on kinetics, activation-, and equilibrium thermodynamics of binding of the receptor binding domain (RBD) from VOC with ACE2 as well as data from computational protein electrostatics revealed a profound remodeling of the physicochemical characteristics of the interaction during the evolution. Thus, as compared to RBDs from Wuhan strain and other VOC, Omicron RBD presented as a unique protein in terms of conformational dynamics and types of non-covalent forces driving the complex formation with ACE2. Viral evolution resulted in a restriction of the RBD structural dynamics, and a shift to a major role of polar forces for ACE2 binding. Further, we investigated how the reshaping of the physicochemical characteristics of interaction affects the binding specificity of S proteins. Data from various binding assays revealed that SARS-CoV-2 Wuhan and Omicron RBDs manifest capacity for promiscuous recognition of unrelated human proteins, but they harbor distinct reactivity patterns. These findings might contribute for mechanistic understanding of the viral tropism and capacity to evade immune responses during evolution.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA