Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Methods ; 218: 101-109, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37549799

RESUMO

The Parkinson's disease associated protein α-synuclein (αS) has been found to contain numerous post-translational modifications (PTMs), in both physiological and pathological states. One PTM site of particular interest is serine 87, which is subject to both O-linked ß-N-acetylglucosamine (gS) modification and phosphorylation (pS), with αS-pS87 enriched in Parkinson's disease. An often-overlooked aspect of these PTMs is their effect on the membrane-binding properties of αS, which are important to its role in regulating neurotransmitter release. Here, we show how one can study these effects by synthesizing αS constructs containing authentic PTMs and labels for single molecule fluorescence correlation spectroscopy measurements. We synthesize αS-gS87 and αS-pS87 by combining native chemical ligation with genetic code expansion approaches. We introduce the fluorophore by a click reaction with a non-canonical amino acid. Beyond the specific problem of PTM effects on αS, our studies highlight the value of this combination of methods for multiply modifying proteins.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Doença de Parkinson/genética , Aminoácidos/metabolismo , Processamento de Proteína Pós-Traducional , Mutagênese
2.
J Biol Chem ; 298(11): 102526, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36162501

RESUMO

Regulation of the neuronal microtubule cytoskeleton is achieved through the coordination of microtubule-associated proteins (MAPs). MAP-Tau, the most abundant MAP in the axon, functions to modulate motor motility, participate in signaling cascades, as well as directly mediate microtubule dynamics. Tau misregulation is associated with a class of neurodegenerative diseases, known as tauopathies, including progressive supranuclear palsy, Pick's disease, and Alzheimer's disease. Many disease-associated mutations in Tau are found in the C-terminal microtubule-binding domain. These mutations decrease microtubule-binding affinity and are proposed to reduce microtubule stability, leading to disease. N-terminal disease-associated mutations also exist, but the mechanistic details of their downstream effects are not as clear. Here, we investigate the effect of the progressive supranuclear palsy-associated N-terminal R5L mutation on Tau-mediated microtubule dynamics using an in vitro reconstituted system. We show that the R5L mutation does not alter Tau interactions with tubulin by fluorescence correlation spectroscopy. Using total internal reflection fluorescence microscopy, we determined that the R5L mutation has no effect on microtubule growth rate, catastrophe frequency, or rescue frequency. Rather, the R5L mutation increases microtubule shrinkage rate. We determine this is due to disruption of Tau patches, larger order Tau complexes known to form on the GDP-microtubule lattice. Altogether, these results provide insight into the role of Tau patches in mediating microtubule dynamics and suggesting a novel mechanism by which mutations in the N-terminal projection domain reduce microtubule stability.


Assuntos
Paralisia Supranuclear Progressiva , Tauopatias , Proteínas tau , Humanos , Microtúbulos/metabolismo , Microtúbulos/patologia , Mutação , Paralisia Supranuclear Progressiva/genética , Paralisia Supranuclear Progressiva/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatias/genética , Tauopatias/metabolismo
3.
J Am Chem Soc ; 145(25): 14019-14030, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37319422

RESUMO

N-terminal acetylation is a chemical modification carried out by N-terminal acetyltransferases. A major member of this enzyme family, NatB, acts on much of the human proteome, including α-synuclein (αS), a synaptic protein that mediates vesicle trafficking. NatB acetylation of αS modulates its lipid vesicle binding properties and amyloid fibril formation, which underlies its role in the pathogenesis of Parkinson's disease. Although the molecular details of the interaction between human NatB (hNatB) and the N-terminus of αS have been resolved, whether the remainder of the protein plays a role in interacting with the enzyme is unknown. Here, we execute the first synthesis, by native chemical ligation, of a bisubstrate inhibitor of NatB consisting of coenzyme A and full-length human αS, additionally incorporating two fluorescent probes for studies of conformational dynamics. We use cryo-electron microscopy (cryo-EM) to characterize the structural features of the hNatB/inhibitor complex and show that, beyond the first few residues, αS remains disordered when in complex with hNatB. We further probe changes in the αS conformation by single molecule Förster resonance energy transfer (smFRET) to reveal that the C-terminus expands when bound to hNatB. Computational models based on the cryo-EM and smFRET data help to explain the conformational changes as well as their implications for hNatB substrate recognition and specific inhibition of the interaction with αS. Beyond the study of αS and NatB, these experiments illustrate valuable strategies for the study of challenging structural biology targets through a combination of protein semi-synthesis, cryo-EM, smFRET, and computational modeling.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , Acetiltransferases N-Terminal , Microscopia Crioeletrônica
4.
J Am Chem Soc ; 144(17): 7911-7918, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35451816

RESUMO

Arginylation is an understudied post-translational modification (PTM) involving the transfer of arginine to aspartate or glutamate sidechains in a protein. Among the targets of this PTM is α-synuclein (αS), a neuronal protein involved in regulating synaptic vesicles. The aggregation of αS is implicated in neurodegenerative diseases, particularly in Parkinson's disease, and arginylation has been found to protect against this pathological process. Arginylated αS has been studied through semisynthesis involving multipart native chemical ligation (NCL), but this can be very labor-intensive with low yields. Here, we present a facile way to introduce a mimic of the arginylation modification into a protein of interest, compatible with orthogonal installation of labels such as fluorophores. We synthesize bromoacetyl arginine and react it with recombinant, site-specific cysteine mutants of αS. We validate the mimic by testing the vesicle binding affinity of mimic-arginylated αS, as well as its aggregation kinetics and monomer incorporation into fibrils, and comparing these results to those of authentically arginylated αS produced through NCL. In cultured neurons, we compare the fibril seeding capabilities of preformed fibrils carrying a small percentage of arginylated αS. We find that, consistent with authentically arginylated αS, mimic-arginylated αS does not perturb the protein's native function but alters aggregation kinetics and monomer incorporation. Both mimic and authentically modified αS suppress aggregation in neuronal cells. Our results provide further insight into the neuroprotective effects of αS arginylation, and our alternative strategy to generate arginylated αS enables the study of this PTM in proteins not accessible through NCL.


Assuntos
Fármacos Neuroprotetores , alfa-Sinucleína , Arginina/metabolismo , Cisteína/metabolismo , Fármacos Neuroprotetores/farmacologia , Processamento de Proteína Pós-Traducional , alfa-Sinucleína/metabolismo
5.
PLoS Biol ; 17(6): e3000318, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31211781

RESUMO

Cell-to-cell transmission of toxic forms of α-Synuclein (αS) is thought to underlie disease progression in Parkinson disease. αS in humans is constitutively N-terminally acetylated (αSacetyl), although the impact of this modification is relatively unexplored. Here, we report that αSacetyl is more effective at inducing intracellular aggregation in primary neurons than unmodified αS (αSun). We identify complex N-linked glycans as binding partners for αSacetyl and demonstrate that cellular internalization of αSacetyl is reduced significantly upon cleavage of extracellular N-linked glycans, but not other carbohydrates. We verify binding of αSacetyl to N-linked glycans in vitro, using both isolated glycans and cell-derived proteoliposomes. Finally, we identify neurexin 1ß, a neuronal glycoprotein, as capable of driving glycan-dependent uptake of αSacetyl. Importantly, our results are specific to αSacetyl because αSun does not demonstrate sensitivity for N-linked glycans in any of our assays. Our study identifies extracellular N-linked glycans-and the glycoprotein neurexin 1ß specifically-as key modulators of neuronal uptake of αSacetyl, drawing attention to the potential therapeutic value of αSacetyl-glycan interactions.


Assuntos
Polissacarídeos/metabolismo , alfa-Sinucleína/metabolismo , Acetilação , Animais , Transporte Biológico , Linhagem Celular Tumoral , Glicoproteínas/metabolismo , Células HEK293 , Humanos , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Polissacarídeos/fisiologia , Cultura Primária de Células
6.
Chembiochem ; 22(8): 1440-1447, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33274519

RESUMO

Post-translational modifications (PTMs) can affect the normal function and pathology of α-synuclein (αS), an amyloid-fibril-forming protein linked to Parkinson's disease. Phosphorylation of αS Tyr39 has recently been found to display a dose-dependent effect on fibril formation kinetics and to alter the morphology of the fibrils. Existing methods to access site-specifically phosphorylated αS for biochemical studies include total or semi-synthesis by native chemical ligation (NCL) as well as chemoenzymatic methods to phosphorylate peptides, followed by NCL. Here, we investigated a streamlined method to produce large quantities of phosphorylated αS by co-expressing a kinase with a protein fragment in Escherichia coli. We also introduced the use of methyl thioglycolate (MTG) to enable one-pot NCL and desulfurization. We compare our optimized methods to previous reports and show that we can achieve the highest yields of site-specifically phosphorylated protein through chemoenzymatic methods using MTG, and that our strategy is uniquely well suited to producing 15 N-labeled, phosphorylated protein for NMR studies.


Assuntos
Tirosina/metabolismo , alfa-Sinucleína/biossíntese , Estrutura Molecular , Isótopos de Nitrogênio , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Tirosina/química , alfa-Sinucleína/química
7.
Annu Rev Phys Chem ; 71: 391-414, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32097582

RESUMO

Intrinsically disordered proteins (IDPs) are now widely recognized as playing critical roles in a broad range of cellular functions as well as being implicated in diverse diseases. Their lack of stable secondary structure and tertiary interactions, coupled with their sensitivity to measurement conditions, stymies many traditional structural biology approaches. Single-molecule Förster resonance energy transfer (smFRET) is now widely used to characterize the physicochemical properties of these proteins in isolation and is being increasingly applied to more complex assemblies and experimental environments. This review provides an overview of confocal diffusion-based smFRET as an experimental tool, including descriptions of instrumentation, data analysis, and protein labeling. Recent papers are discussed that illustrate the unique capability of smFRET to provide insight into aggregation-prone IDPs, protein-protein interactions involving IDPs, and IDPs in complex experimental milieus.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Agregados Proteicos , Imagem Individual de Molécula/métodos
8.
Proc Natl Acad Sci U S A ; 115(37): E8642-E8651, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150414

RESUMO

We used fluorescence spectroscopy and EM to determine how binding of ATP, nucleation-promoting factors, actin monomers, and actin filaments changes the conformation of Arp2/3 complex during the process that nucleates an actin filament branch. We mutated subunits of Schizosaccharomyces pombe Arp2/3 complex for labeling with fluorescent dyes at either the C termini of Arp2 and Arp3 or ArpC1 and ArpC3. We measured Förster resonance energy transfer (FRET) efficiency (ETeff) between the dyes in the presence of the various ligands. We also computed class averages from electron micrographs of negatively stained specimens. ATP binding made small conformational changes of the nucleotide-binding cleft of the Arp2 subunit. WASp-VCA, WASp-CA, and WASp-actin-VCA changed the ETeff between the dyes on the Arp2 and Arp3 subunits much more than between dyes on ArpC1 and ArpC3. Ensemble FRET detected an additional structural change that brought ArpC1 and ArpC3 closer together when Arp2/3 complex bound actin filaments. VCA binding to Arp2/3 complex causes a conformational change that favors binding to the side of an actin filament, which allows further changes required to nucleate a daughter filament.


Assuntos
Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Citoesqueleto de Actina/química , Complexo 2-3 de Proteínas Relacionadas à Actina/química , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Trifosfato de Adenosina/química , Transferência Ressonante de Energia de Fluorescência , Microscopia Eletrônica de Transmissão , Mutação , Ligação Proteica , Conformação Proteica , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteína da Síndrome de Wiskott-Aldrich/química
9.
J Biol Chem ; 294(50): 19381-19394, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31699899

RESUMO

Tau is an intrinsically disordered, microtubule-associated protein that has a role in regulating microtubule dynamics. Despite intensive research, the molecular mechanisms of Tau-mediated microtubule polymerization are poorly understood. Here we used single-molecule fluorescence to investigate the role of Tau's N-terminal domain (NTD) and proline-rich region (PRR) in regulating interactions of Tau with soluble tubulin. We assayed both full-length Tau isoforms and truncated variants for their ability to bind soluble tubulin and stimulate microtubule polymerization. We found that Tau's PRR is an independent tubulin-binding domain that has tubulin polymerization capacity. In contrast to the relatively weak interactions with tubulin mediated by sites distributed throughout Tau's microtubule-binding region (MTBR), resulting in heterogeneous Tau: tubulin complexes, the PRR bound tubulin tightly and stoichiometrically. Moreover, we demonstrate that interactions between the PRR and MTBR are reduced by the NTD through a conserved conformational ensemble. On the basis of these results, we propose that Tau's PRR can serve as a core tubulin-binding domain, whereas the MTBR enhances polymerization capacity by increasing the local tubulin concentration. Moreover, the NTD appears to negatively regulate tubulin-binding interactions of both of these domains. The findings of our study draw attention to a central role of the PRR in Tau function and provide mechanistic insight into Tau-mediated polymerization of tubulin.


Assuntos
Prolina/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas tau/metabolismo , Animais , Sítios de Ligação , Bovinos , Transferência Ressonante de Energia de Fluorescência , Polimerização , Tubulina (Proteína)/isolamento & purificação , Proteínas tau/genética , Proteínas tau/isolamento & purificação
10.
J Am Chem Soc ; 142(52): 21786-21798, 2020 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-33337869

RESUMO

A variety of post-translational modifications (PTMs) are believed to regulate the behavior and function of α-synuclein (αS), an intrinsically disordered protein that mediates synaptic vesicle trafficking. Fibrils of αS are implicated in neurodegenerative disorders such as Parkinson's disease. In this study, we used chemical synthesis and biophysical techniques to characterize the neuroprotective effects of glutamate arginylation, a hitherto little characterized PTM in αS. We developed semisynthetic routes combining peptide synthesis, unnatural amino acid mutagenesis, and native chemical ligation (NCL) to site-specifically introduce the PTM of interest along with fluorescent probes into αS. We synthesized the arginylated glutamate as a protected amino acid, as well as a novel ligation handle for NCL, in order to generate full-length αS modified at various individual sites or a combination of sites. We assayed the lipid-vesicle binding affinities of arginylated αS using fluorescence correlation spectroscopy (FCS) and found that arginylated αS has the same vesicle affinity compared to control protein, suggesting that this PTM does not alter the native function of αS. On the other hand, we studied the aggregation kinetics of modified αS and found that arginylation at E83, but not E46, slows aggregation and decreases the percentage incorporation of monomer into fibrils in a dose-dependent manner. Arginylation at both sites also resulted in deceleration of fibril formation. Our study represents the first synthetic strategy for incorporating glutamate arginylation into proteins and provides insight into the neuroprotective effect of this unusual PTM.


Assuntos
Ácido Glutâmico/metabolismo , Processamento de Proteína Pós-Traducional , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Sítios de Ligação , Mutagênese , Espectrometria de Fluorescência , alfa-Sinucleína/biossíntese , alfa-Sinucleína/genética
11.
Trends Biochem Sci ; 40(5): 243-4, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25769422

RESUMO

4E binding proteins (4E-BPs) play an important role in the regulation of translation by binding to eukaryotic translation initiation factor 4E (eIF4E) and inhibiting assembly of the eIF4F complex. While phosphorylation of 4E-BPs is known to disrupt their binding to eIF4E, the mechanism by which this occurs has been unclear. In a recent study, Forman-Kay and coworkers demonstrate that this mechanism is primarily structure-based: phosphorylation of 4E-BPs results in a disorder-to-order transition, bringing them from their binding-competent disordered state to a folded state incompatible with eIF4E binding.


Assuntos
Proteínas de Transporte/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Animais , Proteínas de Transporte/química , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Fosforilação , Ligação Proteica
12.
Biophys J ; 117(4): 717-728, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31400913

RESUMO

The aggregation and deposition of tau is a hallmark of a class of neurodegenerative diseases called tauopathies. Despite intensive study, cellular and molecular factors that trigger tau aggregation are not well understood. Here, we provide evidence for two mechanisms relevant to the initiation of tau aggregation in the presence of cytoplasmic polyphosphates (polyP): changes in the conformational ensemble of monomer tau and noncovalent cross-linking of multiple tau monomers. We identified conformational changes throughout full-length tau, most notably diminishment of long-range interactions between the termini coupled with compaction of the microtubule binding and proline- rich regions. We found that while the proline-rich and microtubule binding regions both contain polyP binding sites, the proline-rich region is a requisite for compaction of the microtubule binding region upon binding. Additionally, both the magnitude of the conformational change and the aggregation of tau are dependent on the chain length of the polyP polymer. Longer polyP chains are more effective at intermolecular, noncovalent cross-linking of tau. These observations provide an understanding of the initial steps of tau aggregation through interaction with a physiologically relevant aggregation inducer.


Assuntos
Polifosfatos/química , Agregados Proteicos , Proteínas tau/química , Sítios de Ligação , Humanos , Microtúbulos/metabolismo , Mutação , Polifosfatos/metabolismo , Domínios Proteicos Ricos em Prolina , Ligação Proteica , Imagem Individual de Molécula , Proteínas tau/genética , Proteínas tau/metabolismo
13.
Proc Natl Acad Sci U S A ; 113(50): 14336-14341, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27911791

RESUMO

Tau is an intrinsically disordered protein with an important role in maintaining the dynamic instability of neuronal microtubules. Despite intensive study, a detailed understanding of the functional mechanism of tau is lacking. Here, we address this deficiency by using intramolecular single-molecule Förster Resonance Energy Transfer (smFRET) to characterize the conformational ensemble of tau bound to soluble tubulin heterodimers. Tau adopts an open conformation on binding tubulin, in which the long-range contacts between both termini and the microtubule binding region that characterize its compact solution structure are diminished. Moreover, the individual repeats within the microtubule binding region that directly interface with tubulin expand to accommodate tubulin binding, despite a lack of extension in the overall dimensions of this region. These results suggest that the disordered nature of tau provides the significant flexibility required to allow for local changes in conformation while preserving global features. The tubulin-associated conformational ensemble is distinct from its aggregation-prone one, highlighting differences between functional and dysfunctional states of tau. Using constraints derived from our measurements, we construct a model of tubulin-bound tau, which draws attention to the importance of the role of tau's conformational plasticity in function.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo , Animais , Sítios de Ligação , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética , Microtúbulos/metabolismo , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Neurônios/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica
14.
Alzheimers Dement ; 15(11): 1489-1502, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31653529

RESUMO

OBJECTIVE: Understanding the heterogeneous pathology in Alzheimer's disease and related tauopathies is one of the most urgent and fundamental challenges facing the discovery of novel disease-modifying therapies. Through monitoring ensembles of toxic and nontoxic tau oligomers spontaneously formed in cells, our biosensor technology can identify tool compounds that modulate tau oligomer structure and toxicity, providing much needed insight into the nature and properties of toxic tau oligomers. BACKGROUND: Tauopathies are a group of neurodegenerative disorders characterized by pathologic aggregation of the microtubule binding protein tau. Recent studies suggest that tau oligomers are the primary toxic species in tauopathies. NEW/UPDATED HYPOTHESIS: We hypothesize that tau biosensors capable of monitoring tau oligomer conformation are able to identify tool compounds that modulate the structure and conformation of these tau assemblies, providing key insight into the unique structural fingerprints of toxic tau oligomers. These fingerprints will provide gravely needed biomarker profiles to improve staging of early tauopathy pathology and generate lead compounds for potential new therapeutics. Our time-resolved fluorescence resonance energy transfer biosensors provide us an exquisitely sensitive technique to monitor minute structural changes in monomer and oligomer conformation. In this proof-of-concept study, we identified a novel tool compound, MK-886, which directly binds tau, perturbs the conformation of toxic tau oligomers, and rescues tau-induced cytotoxicity. Furthermore, we show that MK-886 alters the conformation of tau monomer at the proline-rich and microtubule binding regions, stabilizing an on-pathway oligomer. MAJOR CHALLENGES FOR THE HYPOTHESIS: Our approach monitors changes in the ensemble of assemblies that are spontaneously formed in cells but does not specifically isolate or enrich unique toxic tau species. However, time-resolved fluorescence resonance energy transfer does not provide high-resolution, atomic scale information, requiring additional experimental techniques to resolve the structural features stabilized by different tool compounds. LINKAGE TO OTHER MAJOR THEORIES: Our biosensor technology is broadly applicable to other areas of tauopathy therapeutic development. These biosensors can be readily modified for different isoforms of tau, specific post-translational modifications, and familial Alzheimer's disease-associated mutations. We are eager to explore tau interactions with chaperone proteins, monitor cross-reactivity with other intrinsically disordered proteins, and target seeded oligomer pathology.


Assuntos
Doença de Alzheimer/patologia , Biomarcadores/metabolismo , Transferência Ressonante de Energia de Fluorescência , Tauopatias , Proteínas tau/metabolismo , Encéfalo/patologia , Humanos , Indóis
15.
Biophys J ; 114(1): 53-64, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29320696

RESUMO

We describe a strategy for experimentally-constraining computational simulations of intrinsically disordered proteins (IDPs), using α-synuclein, an IDP with a central role in Parkinson's disease pathology, as an example. Previously, data from single-molecule Förster Resonance Energy Transfer (FRET) experiments have been effectively utilized to generate experimentally constrained computational models of IDPs. However, the fluorophores required for single-molecule FRET experiments are not amenable to the study of short-range (<30 Å) interactions. Using ensemble FRET measurements allows one to acquire data from probes with multiple distance ranges, which can be used to constrain Monte Carlo simulations in PyRosetta. To appropriately employ ensemble FRET data as constraints, we optimized the shape and weight of constraining potentials to afford ensembles of structures that are consistent with experimental data. We also used this approach to examine the structure of α-synuclein in the presence of the compacting osmolyte trimethylamine-N-oxide. Despite significant compaction imparted by 2 M trimethylamine-N-oxide, the underlying ensemble of α-synuclein remains largely disordered and capable of aggregation, also in agreement with experimental data. These proof-of-concept experiments demonstrate that our modeling protocol enables one to efficiently generate experimentally constrained models of IDPs that incorporate atomic-scale detail, allowing one to study an IDP under a variety of conditions.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Método de Monte Carlo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Regulação Alostérica
16.
J Membr Biol ; 251(5-6): 757, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30054671

RESUMO

The original version of the article unfortunately contained error in author group; two authors were not submitted and published in the original version. Also the funding information is erroneously omitted.

17.
Bioorg Med Chem ; 26(6): 1197-1202, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29150077

RESUMO

We have previously reported that miniature proteins containing a distinct array of 5 arginine residues on a folded α-helix - a penta-arg motif - traffic with high efficiency from endosomes into the cytosol and nucleus of mammalian cells. Here we evaluate whether a penta-arg motif can improve the intracellular trafficking of an otherwise impermeant hydrocarbon-stapled peptide, SAH-p53-4Rho. We prepared a panel of SAH-p53-4Rho variants containing penta-arg sequences with different spacings and axial arrangement and evaluated their overall uptake (as judged by flow cytometry) and their intracellular access (as determined by fluorescence correlation spectroscopy, FCS). One member of this panel reached the cytosol extremely well, matching the level achieved by SAH-p53-8Rho, a previously reported and highly permeant hydrocarbon-stapled peptide. Notably, we found no relationship between cellular uptake as judged by flow cytometry and cytosolic access as determined by FCS. This result reiterates that overall uptake and endosomal release represent fundamentally different biological processes. To determine cytosolic and/or nuclear access, one must measure concentration directly using a quantitative and non-amplified tool such as FCS. As has been observed for highly cell permeant miniature proteins such as ZF5.3, optimal penetration of hydrocarbon-stapled peptides into the cell cytosol results when the penta-arg motif is located within more (as opposed to less) structured regions.


Assuntos
Arginina/química , Citosol/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Células HeLa , Humanos , Hidrocarbonetos/química , Peptídeos/química , Peptídeos/farmacologia , Espectrometria de Fluorescência
18.
Biophys J ; 112(12): 2567-2574, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28636913

RESUMO

Tau is an intrinsically disordered protein with a central role in the pathology of a number of neurodegenerative diseases. Tau normally functions to stabilize neuronal microtubules, although the mechanism underlying this function is not well understood. Of note is that the interaction between tau and soluble tubulin, which has implications both in understanding tau function as well as its role in disease, is underexplored. Here we investigate the relationship between heterogeneity in tau-tubulin complexes and tau function. Specifically, we created a series of truncated and scrambled tau constructs and characterized the size and heterogeneity of the tau-tubulin complexes formed under nonpolymerizing conditions. Function of the constructs was verified by tubulin polymerization assays. We find that, surprisingly, the pseudo-repeat region of tau, which flanks the core microtubule-binding domain of tau, contributes largely to the formation of large, heterogeneous tau tubulin complexes; additional independent tubulin binding sites exist in repeats two and three of the microtubule binding domain. Of particular interest is that we find positive correlation between the size and heterogeneity of the complexes and rate of tau-promoted microtubule polymerization. We propose that tau-tubulin can be described as a "fuzzy" complex, and our results demonstrate the importance of heterogeneous complex formation in tau function. This work provides fundamental insights into the functional mechanism of tau, and more broadly underscores the relevance of heterogeneous and dynamic complexes in the functions of intrinsically disordered proteins.


Assuntos
Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas tau/metabolismo , Animais , Sítios de Ligação , Encéfalo/metabolismo , Bovinos , Difusão , Microtúbulos/química , Modelos Moleculares , Mutação , Polimerização , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Tempo , Tubulina (Proteína)/química , Proteínas tau/química , Proteínas tau/genética
19.
J Biol Chem ; 291(3): 1456-71, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26582198

RESUMO

In LeuT, a prokaryotic homolog of neurotransmitter transporters, Na(+) stabilizes outward-open conformational states. We examined how each of the two LeuT Na(+) binding sites contributes to Na(+)-dependent closure of the cytoplasmic pathway using biochemical and biophysical assays of conformation. Mutating either of two residues that contribute to the Na2 site completely prevented cytoplasmic closure in response to Na(+), suggesting that Na2 is essential for this conformational change, whereas Na1 mutants retained Na(+) responsiveness. However, mutation of Na1 residues also influenced the Na(+)-dependent conformational change in ways that varied depending on the position mutated. Computational analyses suggest those mutants influence the ability of Na1 binding to hydrate the substrate pathway and perturb an interaction network leading to the extracellular gate. Overall, the results demonstrate that occupation of Na2 stabilizes outward-facing conformations presumably through a direct interaction between Na(+) and transmembrane helices 1 and 8, whereas Na(+) binding at Na1 influences conformational change through a network of intermediary interactions. The results also provide evidence that N-terminal release and helix motions represent distinct steps in cytoplasmic pathway opening.


Assuntos
Sistemas de Transporte de Aminoácidos/química , Organismos Aquáticos/metabolismo , Proteínas de Bactérias/química , Bactérias Gram-Negativas/metabolismo , Modelos Moleculares , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/química , Sódio/metabolismo , Substituição de Aminoácidos , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cisteína/química , Ligantes , Lipossomos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica , Proteolipídeos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
20.
Biochim Biophys Acta ; 1858(7 Pt B): 1594-609, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26972046

RESUMO

We review experimental and simulation approaches that have been used to determine curvature generation and remodeling of lipid bilayers by membrane-bending proteins. Particular emphasis is placed on the complementary approaches used to study α-Synuclein (αSyn), a major protein involved in Parkinson's disease (PD). Recent cellular and biophysical experiments have shown that the protein 1) deforms the native structure of mitochondrial and model membranes; and 2) inhibits vesicular fusion. Today's advanced experimental and computational technology has made it possible to quantify these protein-induced changes in membrane shape and material properties. Collectively, experiments, theory and multi-scale simulation techniques have established the key physical determinants of membrane remodeling and rigidity: protein binding energy, protein partition depth, protein density, and membrane tension. Despite the exciting and significant progress made in recent years in these areas, challenges remain in connecting biophysical insights to the cellular processes that lead to disease. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.


Assuntos
Bicamadas Lipídicas/química , Proteínas de Membrana/química , Proteínas de Membrana/ultraestrutura , Simulação de Dinâmica Molecular , alfa-Sinucleína/química , alfa-Sinucleína/ultraestrutura , Sítios de Ligação , Simulação por Computador , Fluidez de Membrana , Modelos Químicos , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA