Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Mol Psychiatry ; 28(9): 3782-3794, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37759036

RESUMO

Synaptic potentiation underlies various forms of behavior and depends on modulation by multiple activity-dependent transcription factors to coordinate the expression of genes necessary for sustaining synaptic transmission. Our current study identified the tumor suppressor p53 as a novel transcription factor involved in this process. We first revealed that p53 could be elevated upon chemically induced long-term potentiation (cLTP) in cultured primary neurons. By knocking down p53 in neurons, we further showed that p53 is required for cLTP-induced elevation of surface GluA1 and GluA2 subunits of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR). Because LTP is one of the principal plasticity mechanisms underlying behaviors, we employed forebrain-specific knockdown of p53 to evaluate the role of p53 in behavior. Our results showed that, while knocking down p53 in mice does not alter locomotion or anxiety-like behavior, it significantly promotes repetitive behavior and reduces sociability in mice of both sexes. In addition, knocking down p53 also impairs hippocampal LTP and hippocampus-dependent learning and memory. Most importantly, these learning-associated defects are more pronounced in male mice than in female mice, suggesting a sex-specific role of p53 in these behaviors. Using RNA sequencing (RNAseq) to identify p53-associated genes in the hippocampus, we showed that knocking down p53 up- or down-regulates multiple genes with known functions in synaptic plasticity and neurodevelopment. Altogether, our study suggests p53 as an activity-dependent transcription factor that mediates the surface expression of AMPAR, permits hippocampal synaptic plasticity, represses autism-like behavior, and promotes hippocampus-dependent learning and memory.


Assuntos
Transtorno Autístico , Animais , Feminino , Masculino , Camundongos , Transtorno Autístico/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/genética , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34911751

RESUMO

Epileptic encephalopathy (EE) is characterized by seizures that respond poorly to antiseizure drugs, psychomotor delay, and cognitive and behavioral impairments. One of the frequently mutated genes in EE is KCNQ2, which encodes the Kv7.2 subunit of voltage-gated Kv7 potassium channels. Kv7 channels composed of Kv7.2 and Kv7.3 are enriched at the axonal surface, where they potently suppress neuronal excitability. Previously, we reported that the de novo dominant EE mutation M546V in human Kv7.2 blocks calmodulin binding to Kv7.2 and axonal surface expression of Kv7 channels via their intracellular retention. However, whether these pathogenic mechanisms underlie epileptic seizures and behavioral comorbidities remains unknown. Here, we report conditional transgenic cKcnq2+/M547V mice, in which expression of mouse Kv7.2-M547V (equivalent to human Kv7.2-M546V) is induced in forebrain excitatory pyramidal neurons and astrocytes. These mice display early mortality, spontaneous seizures, enhanced seizure susceptibility, memory impairment, and repetitive behaviors. Furthermore, hippocampal pathology shows widespread neurodegeneration and reactive astrocytes. This study demonstrates that the impairment in axonal surface expression of Kv7 channels is associated with epileptic seizures, cognitive and behavioral deficits, and neuronal loss in KCNQ2-related EE.


Assuntos
Síndromes Epilépticas/genética , Canal de Potássio KCNQ2/genética , Proteínas do Tecido Nervoso/genética , Animais , Comportamento Animal , Disfunção Cognitiva , Síndromes Epilépticas/patologia , Síndromes Epilépticas/psicologia , Feminino , Gliose , Hipocampo/patologia , Canal de Potássio KCNQ2/metabolismo , Ácido Caínico , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Células Piramidais/metabolismo
3.
EMBO Rep ; 22(10): e52645, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34342389

RESUMO

Individuals affected by infantile spasms (IS), such as those carrying mutations in an IS-linked gene, neural precursor cell expressed developmentally downregulated gene 4-like (Nedd4-2), exhibit developmental delays and learning disabilities, but the underlying mechanism is unknown. Using conditional Nedd4-2 knockout mice, we uncover that Nedd4-2 functions to maintain the excitatory synapses in hippocampal neurons and allows for late-phase long-term synaptic potentiation (L-LTP) at Schaffer collateral synapses in the hippocampus. We also find that Nedd4-2 is required for multiple forms of hippocampus-dependent learning and memory. Mechanistically, we show that loss of Nedd4-2 leads to a decrease in actin polymerization caused by reduced phosphorylation of the actin depolymerizing protein cofilin. A cell-permeable peptide promoting phosphorylation of endogenous cofilin in Nedd4-2 knockout neurons restores the number of hippocampal excitatory synapses and hippocampal L-LTP and partially restores hippocampus-dependent learning in mice. Taken together, our results reveal a novel mechanism underlying IS-associated learning disabilities and may provide information for future therapeutic strategies for IS.


Assuntos
Fatores de Despolimerização de Actina , Espasmos Infantis , Fatores de Despolimerização de Actina/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Lactente , Aprendizagem , Potenciação de Longa Duração , Camundongos , Plasticidade Neuronal , Espasmos Infantis/genética , Sinapses/metabolismo
4.
Gen Comp Endocrinol ; 333: 114185, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509136

RESUMO

Sex differences in cell number in the preoptic area of the hypothalamus (POA) are documented across all major vertebrate lineages and contribute to differential regulation of the hypothalamic-pituitary-gonad axis and reproductive behavior between the sexes. Sex-changing fishes provide a unique opportunity to study mechanisms underlying sexual differentiation of the POA. In anemonefish (clownfish), which change sex from male to female, females have approximately twice the number of medium-sized cells in the anterior POA compared to males. This sex difference transitions from male-like to female-like during sex change. However, it is not known how this sex difference in POA cell number is established. This study tests the hypothesis that new cell addition plays a role. We initiated adult male-to-female sex change in 30 anemonefish (Amphiprion ocellaris) and administered BrdU to label new cells added to the POA at regular intervals throughout sex change. Sex-changing fish added more new cells to the anterior POA than non-changing fish, supporting the hypothesis. The observed effects could be accounted for by differences in POA volume, but they are also consistent with a steady trickle of new cells being gradually accumulated in the anterior POA before vitellogenic oocytes develop in the gonads. These results provide insight into the unique characteristics of protandrous sex change in anemonefish relative to other modes of sex change, and support the potential for future research in sex-changing fishes to provide a richer understanding of the mechanisms for sexual differentiation of the brain.


Assuntos
Perciformes , Área Pré-Óptica , Animais , Feminino , Masculino , Perciformes/fisiologia , Peixes/fisiologia , Gônadas , Diferenciação Sexual/fisiologia , Caracteres Sexuais
5.
Horm Behav ; 145: 105239, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35926412

RESUMO

Many fish species exhibit natural sex change as part of their life, providing unique opportunities to study sexually-differentiated social behaviors and their plasticity. Past research has shown that behavioral sex change in the female-to-male (protogynous) direction occurs rapidly and well before gonadal sex change. However, little is known about the timecourse of behavioral sex change in male-to-female (protandrous) sex-changing species, limiting our ability to compare patterns of behavioral sex change across species and identify conserved or divergent underlying mechanisms. Using the protandrous sex changing anemonefish Amphiprion ocellaris, we assessed behavior (aggression and parental care) and hormones (estradiol and 11-ketotestosterone) in fish over six months of sex change, and compared those fish against their non-changing partners as well as control males and females. Contrary to expectations, we found that sex-changing fish displayed behavior that was persistently male-like, and that their behavior did not become progressively female-like as sex change progressed. Hormones shifted to an intermediate profile between males and females and remained stable until gonads changed. These results support a new perspective that the timecourse for protandrous sex change in anemonefish is completely distinct from other well-established models, such that behavioral sex change does not occur until after gonadal sex change is complete, and that sex-changing fish have a stable and unique behavioral and hormonal phenotype that is distinct from a male-typical or female-typical phenotype. The results also identify aspects of sex change that may fundamentally differ between protandrous and protogynous modes, motivating further research into these remarkable examples of phenotypic plasticity.


Assuntos
Perciformes , Animais , Estradiol , Feminino , Peixes , Gônadas , Masculino , Processos de Determinação Sexual
6.
Horm Behav ; 136: 105043, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34507054

RESUMO

Endocrine disrupting chemicals, such as bisphenol A (BPA) and ethinylestradiol (EE2), are detected in the marine environment from plastic waste and wastewater effluent. However, their impact on reproduction in sexually labile coral reef fish is unknown. The objective of this study was to determine impacts of environmentally relevant concentrations of BPA and EE2 on behavior, brain gene expression, gonadal histology, sex hormone profile, and plasma vitellogenin (Vtg) levels in the anemonefish, Amphiprion ocellaris. A. ocellaris display post-maturational sex change from male to female in nature. Sexually immature, male fish were paired together and fed twice daily with normal food (control), food containing BPA (100 µg/kg), or EE2 (0.02 µg/kg) (n = 9 pairs/group). Aggression toward an intruder male was measured at 1, 3, and 6 months. Blood was collected at 3 and 6 months to measure estradiol (E2), 11-ketotestosterone (11-KT), and Vtg. At the end of the study, fish were euthanized to assess gonad morphology and to measure expression of known sexually dimorphic genes in the brain. Relative to control, BPA decreased aggression, altered brain transcript levels, increased non-vitellogenic and vitellogenic eggs in the gonad, reduced 11-KT, and increased plasma Vtg. In two BPA-treated pairs, both individuals had vitellogenic eggs, which does not naturally occur. EE2 reduced 11-KT in subordinate individuals and altered expression of one transcript in the brain toward the female profile. Results suggest BPA, and to a lesser extent EE2, pollution in coral reef ecosystems could interfere with normal reproductive physiology and behavior of the iconic sexually labile anemonefish.


Assuntos
Recifes de Corais , Estradiol , Animais , Compostos Benzidrílicos , Encéfalo , Ecossistema , Estradiol/farmacologia , Feminino , Peixes , Hormônios Esteroides Gonadais , Gônadas , Masculino , Fenóis , Vitelogeninas/genética
7.
J Nutr ; 150(12): 3075-3085, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32937657

RESUMO

BACKGROUND: Alpha-tocopherol (αT), the bioactive constituent of vitamin E, is essential for fertility and neurological development. Synthetic αT (8 stereoisomers; all rac-αT) is added to infant formula at higher concentrations than natural αT (RRR-αT only) to adjust for bio-potency differences, but its effects on brain development are poorly understood. OBJECTIVES: The objective was to determine the impact of bio-potency-adjusted dietary all rac-αT versus RRR-αT, fed to dams, on the hippocampal gene expression in weanling mice. METHODS: Male/female pairs of C57BL/6J mice were fed AIN 93-G containing RRR-αT (NAT) or all rac-αT (SYN) at 37.5 or 75 IU/kg (n = 10/group) throughout gestation and lactation. Male pups were euthanized at 21 days. Half the brain was evaluated for the αT concentration and stereoisomer distribution. The hippocampus was dissected from the other half, and RNA was extracted and sequenced. Milk αT was analyzed in separate dams. RESULTS: A total of 797 differentially expressed genes (DEGs) were identified in the hippocampi across the 4 dietary groups, at a false discovery rate of 10%. Comparing the NAT-37.5 group to the NAT-75 group or the SYN-37.5 group to the SYN-75 group, small differences in brain αT concentrations (10%; P < 0.05) led to subtle changes (<10%) in gene expression of 600 (NAT) or 487 genes (SYN), which were statistically significant. Marked differences in brain αT stereoisomer profiles (P < 0.0001) had a small effect on fewer genes (NAT-37.5 vs. SYN-37.5, 179; NAT-75 vs. SYN-75, 182). Most of the DEGs were involved in transcription regulation and synapse formation. A network analysis constructed around known vitamin E interacting proteins (VIPs) revealed a group of 32 DEGs between NAT-37.5 vs. SYN-37.5, explained by expression of the gene for the VIP, protein kinase C zeta (Pkcz). CONCLUSIONS: In weanling mouse hippocampi, a network of genes involved in transcription regulation and synapse formation was differentially affected by dam diet αT concentration and source: all rac-αT or RRR-αT.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , alfa-Tocoferol/metabolismo , Animais , Dieta , Feminino , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Leite/química , Leite/metabolismo , alfa-Tocoferol/química
8.
Nutr Neurosci ; 23(3): 170-182, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29914347

RESUMO

ß-hydroxy ß-methylbutyrate (HMB) is a nutritional supplement purported to enhance skeletal muscle mass and strength, as well as cognitive function in older adults. The purpose of this study was to determine the potential for long-term HMB supplementation to preserve muscle function and cognition in aged mice, as well as provide evidence of a link between vessel-associated pericyte function and outcomes. Four- (Adult/Ad) and 17 month-old (Aged/Ag) C57BL/6J mice consumed chow containing 600 mg/kg BW/day of either Ca-HMB (Ad, n=16; Ag, n=17) or Ca-Lactate (Ad, n=16; Ag, n=17) for 6 months. HMB did not prevent age-related reductions in muscle mass, strength and coordination (Age main effect, P<0.05). The rate of muscle protein synthesis decreased within the mitochondrial fraction (age main effect, P<0.05), and this decline was not prevented with HMB. Despite no change in muscle mass or function, an age-dependent reduction in active avoidance learning was attenuated with HMB (Age and HMB main effects, P<0.05). Age detrimentally impacted muscle-resident pericyte gene expression with no recovery observed with HMB, whereas no changes in brain-resident pericyte quantity or function were observed with age or HMB. The findings from this study suggest that prolonged HMB supplementation starting in adulthood may preserve cognition with age.


Assuntos
Envelhecimento/fisiologia , Cognição/efeitos dos fármacos , Valeratos/administração & dosagem , Envelhecimento/efeitos dos fármacos , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Cognição/fisiologia , Suplementos Nutricionais , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular/efeitos dos fármacos , Desenvolvimento Muscular/genética , Proteínas Musculares/biossíntese , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Tamanho do Órgão/efeitos dos fármacos , Pericitos/efeitos dos fármacos , Pericitos/fisiologia
9.
Am J Physiol Cell Physiol ; 317(5): C1011-C1024, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31433691

RESUMO

Unaccustomed resistance exercise can initiate skeletal muscle remodeling and adaptive mechanisms that can confer protection from damage and enhanced strength with subsequent stimulation. The myofiber may provide the primary origin for adaptation, yet multiple mononuclear cell types within the surrounding connective tissue may also contribute. The purpose of this study was to evaluate the acute response of muscle-resident interstitial cells to contraction initiated by electrical stimulation (e-stim) and subsequently determine the contribution of pericytes to remodeling as a result of training. Mice were subjected to bilateral e-stim or sham treatment. Following a single session of e-stim, NG2+CD45-CD31- (NG2+Lin-) pericyte, CD146+Lin- pericyte, and PDGFRα+ fibroadipogenic progenitor cell quantity and function were evaluated via multiplex flow cytometry and targeted quantitative PCR. Relative quantity was not significantly altered 24 h postcontraction, yet unique gene signatures were observed for each cell population at 3 h postcontraction. CD146+Lin- pericytes appeared to be most responsive to contraction, and upregulation of genes related to immunomodulation and extracellular matrix remodeling was observed via RNA sequencing. Intramuscular injection of CD146+Lin- pericytes did not significantly increase myofiber size yet enhanced ECM remodeling and angiogenesis in response to repeated bouts of e-stim for 4 wk. The results from this study provide the first evidence that CD146+Lin- pericytes are responsive to skeletal muscle contraction and may contribute to the beneficial outcomes associated with exercise.


Assuntos
Contração Muscular/fisiologia , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Pericitos/metabolismo , Animais , Antígeno CD146/metabolismo , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Estimulação Elétrica/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
J Neurosci Res ; 97(6): 683-697, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30680776

RESUMO

Learning and memory are fundamental processes that are disrupted in many neurological disorders including Alzheimer's disease and epilepsy. The hippocampus plays an integral role in these functions, and modulation of synaptic transmission mediated by γ-aminobutyric acid (GABA) type-A receptors (GABAA Rs) impacts hippocampus-dependent learning and memory. The protein diazepam binding inhibitor (DBI) differentially modulates GABAA Rs in various brain regions, including hippocampus, and changes in DBI levels may be linked to altered learning and memory. The effects of genetic loss of DBI signaling on these processes, however, have not been determined. In these studies, we examined male and female constitutive DBI knockout mice and wild-type littermates to investigate the role of DBI signaling in modulating multiple forms of hippocampus-dependent spatial learning and memory. DBI knockout mice did not show impaired discrimination of objects in familiar and novel locations in an object location memory test, but did exhibit reduced time spent exploring the objects. Multiple parameters of Barnes maze performance, testing the capability to utilize spatial reference cues, were disrupted in DBI knockout mice. Furthermore, whereas most wild-type mice adopted a direct search strategy upon learning the location of the target hole, knockout mice showed higher rates of using an inefficient random strategy. In addition, DBI knockout mice displayed typical levels of contextual fear conditioning, but lacked a sex difference observed in wild-type mice. Together, these data suggest that DBI selectively influences certain forms of spatial learning and memory, indicating novel roles for DBI signaling in modulating hippocampus-dependent behavior in a task-specific manner.


Assuntos
Inibidor da Ligação a Diazepam/fisiologia , Hipocampo/fisiologia , Aprendizagem Espacial/fisiologia , Memória Espacial/fisiologia , Animais , Condicionamento Clássico , Inibidor da Ligação a Diazepam/genética , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Caracteres Sexuais , Navegação Espacial/fisiologia
11.
Horm Behav ; 112: 65-76, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30959023

RESUMO

Sex differences in the anatomy and physiology of the vertebrate preoptic area (POA) arise during development, and influence sex-specific reproductive functions later in life. Relative to masculinization, mechanisms for feminization of the POA are not well understood. The purpose of this study was to induce sex change from male to female in the anemonefish Amphiprion ocellaris, and track the timing of changes in POA cytoarchitecture, composition of the gonads and circulating sex steroid levels. Reproductive males were paired together and then sampled after 3 weeks, 6 months, 1 year and 3 years. Results show that as males change sex into females, number of medium cells in the anterior POA (parvocellular region) approximately double to female levels over the course of several months to 1 year. Feminization of gonads, and plasma sex steroids occur independently, on a variable timescale, up to years after POA sex change has completed. Findings suggest the process of POA feminization is orchestrated by factors originating from within the brain as opposed to being cued from the gonads, consistent with the dominant hypothesis in mammals. Anemonefish provide an opportunity to explore active mechanisms responsible for female brain development in an individual with male gonads and circulating sex steroid levels.


Assuntos
Feminização/etiologia , Feminização/patologia , Gônadas/fisiologia , Perciformes/fisiologia , Área Pré-Óptica/fisiologia , Animais , Encéfalo/patologia , Contagem de Células , Feminino , Feminização/sangue , Feminização/veterinária , Hormônios Esteroides Gonadais/sangue , Gônadas/patologia , Masculino , Perciformes/metabolismo , Área Pré-Óptica/patologia , Caracteres Sexuais , Diferenciação Sexual/fisiologia , Testículo/patologia
12.
Anal Chem ; 90(6): 3802-3810, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29481055

RESUMO

Over the past decade, advances in mass spectrometry-based proteomics have accelerated brain proteome research aimed at studying the expression, dynamic modification, interaction and function of proteins in the nervous system that are associated with physiological and behavioral processes. With the latest hardware and software improvements in top-down mass spectrometry, the technology has expanded from mere protein profiling to high-throughput identification and quantification of intact proteoforms. Murine systems are broadly used as models to study human diseases. Neuroscientists specifically study the mouse brain from inbred strains to help understand how strain-specific genotype and phenotype affect development, functioning, and disease progression. This work describes the first application of label-free quantitative top-down proteomics to the analysis of the mouse brain proteome. Operating in discovery mode, we determined physiochemical differences in brain tissue from four healthy inbred strains, C57BL/6J, DBA/2J, FVB/NJ, and BALB/cByJ, after probing their intact proteome in the 3.5-30 kDa mass range. We also disseminate these findings using a new tool for top-down proteomics, TDViewer and cataloged them in a newly established Mouse Brain Proteoform Atlas. The analysis of brain tissues from the four strains identified 131 gene products leading to the full characterization of 343 of the 593 proteoforms identified. Within the results, singly and doubly phosphorylated ARPP-21 proteoforms, known to inhibit calmodulin, were differentially expressed across the four strains. Gene ontology (GO) analysis for detected differentially expressed proteoforms also helps to illuminate the similarities and dissimilarities in phenotypes among these inbred strains.


Assuntos
Química Encefálica , Espectrometria de Massas/métodos , Camundongos Endogâmicos , Proteoma/análise , Proteômica/métodos , Animais , Encéfalo/metabolismo , Cromatografia Líquida/métodos , Feminino , Camundongos Endogâmicos BALB C/metabolismo , Camundongos Endogâmicos C57BL/metabolismo , Camundongos Endogâmicos DBA/metabolismo , Camundongos Endogâmicos/metabolismo , Proteoma/metabolismo , Software
13.
Horm Behav ; 103: 62-70, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29928890

RESUMO

Fathering behavior is critical for offspring survival in many species across diverse taxa, but our understanding of the neuroendocrine mechanisms regulating paternal care is limited in part because of the few primarily paternal species among the common animal models. However, many teleosts display primarily paternal care, and among the teleosts, anemonefish species are particularly well suited for isolating molecular mechanisms of fathering as they perform parental care in isolation of many other typically competing behaviors such as territorial defense and nest building. The goal of this study was to determine the extent to which whole brain gene expression levels of isotocin receptors, arginine vasotocin receptors, and aromatase as well as circulating levels of the bioactive sex steroid hormones estradiol (E2) and 11-ketotestosterone (11KT) vary in association with parenting behavior in Amphiprion ocellaris. Brain aromatase and IT receptor gene expression were higher in both males and females that were parenting versus not. IT receptor expression was overall higher in males than females, which we interpret is a reflection of the greater parental effort that males display. Aromatase was overall higher in females than males, which we conclude is related to the higher circulating E2, which crosses into the brain and increases aromatase transcription. Results suggest both aromatase and IT receptors are dynamically upregulated in the brains of A. ocellaris males and females to support high levels of parental effort.


Assuntos
Aromatase/genética , Encéfalo/metabolismo , Comportamento de Nidação/fisiologia , Perciformes/genética , Receptores de Ocitocina/genética , Animais , Aromatase/metabolismo , Encéfalo/enzimologia , Estradiol/sangue , Feminino , Regulação da Expressão Gênica , Masculino , Comportamento Materno/fisiologia , Comportamento Paterno/fisiologia , Perciformes/metabolismo , Receptores de Ocitocina/metabolismo , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo , Anêmonas-do-Mar , Testosterona/análogos & derivados , Testosterona/sangue
14.
Nutr Neurosci ; 21(4): 257-267, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28091281

RESUMO

OBJECTIVE: High- protein diets have become increasingly popular with various touted benefits. However, the extent to which protein quantity and source affects cognitive functioning through altering postprandial amino acid profiles has not been investigated. Further, whether all protein sources are similarly anorexigenic is uncertain. The objective of this study was to determine the influence of protein level and source on Barnes maze performance, satiety and plasma amino acid levels in male Sprague-Dawley rats. METHODS: Rats were entrained to a meal-feeding schedule consisting of a 30 minutes meal, equivalent to 20% of average daily intake, one hour into the dark phase then ad libitum access to food for 5 h. On test days, rats received one of three isocaloric diets as their first meal, hereafter referred to as Egg White (EW), Wheat Gluten (WG), or Basal, and then were measured for cognitive performance, feeding behavior, or plasma amino acid levels via jugular catheter. Percentage energy from protein was 35% for both EW and WG and 20% for Basal with equal amounts provided by EW and WG proteins. RESULTS: Rats provided EW performed similarly to Basal on the Barnes maze, whereas WG performed worse. EW increased satiety, whereas WG reduced satiety relative to Basal. Both EW and WG increased postprandial concentrations of large neutral and branched chain amino acids relative to Basal, but in EW, concentrations were slower to peak, and peaked to a higher level than WG. DISCUSSION: Results demonstrate the importance of protein source for cognition and satiety enhancing effects of a high-protein meal.


Assuntos
Dieta Rica em Proteínas/psicologia , Proteínas Dietéticas do Ovo/farmacologia , Glutens/farmacologia , Memória/efeitos dos fármacos , Aminoácidos/sangue , Aminoácidos/metabolismo , Animais , Glicemia , Proteínas Alimentares/farmacologia , Ingestão de Energia , Comportamento Alimentar , Aprendizagem , Masculino , Aprendizagem em Labirinto , Período Pós-Prandial , Ratos , Ratos Sprague-Dawley , Saciação
15.
Horm Behav ; 90: 113-119, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28288796

RESUMO

The nonapeptides isotocin (IT) and arginine vasotocin (AVT), along with their mammalian homologs oxytocin and arginine vasopressin, are well known regulators of social behaviors across vertebrate taxa. However, little is known about their involvement in paternal care. Here, we measured the effect of an IT and an AVT V1a receptor antagonist on paternal behaviors in the primarily paternal teleost Amphiprion ocellaris. We also measured the effect of the IT receptor antagonist on aggression in dyadic contests between two non-reproductive fish to assess specificity of the effect on paternal behaviors. Individual differences in levels of paternal behaviors (nips, fanning the eggs, and proportion of the time in the nest) were consistent across spawning cycles when no treatments were administered. The IT receptor antagonist severely reduced paternal behaviors but had no effect on aggression, whereas the AVT V1a receptor antagonist increased paternal behaviors. These results support the idea that IT signaling is crucial for the expression of paternal behavior in A. ocellaris. Based on a previous study showing that the AVT V1a antagonist decreases aggression in dyadic contests, we hypothesize that the antagonist enhances paternal behavior indirectly by reducing vigilance and aggression, thereby alleviating effort directed towards other competing behaviors and allowing for the increased expression of paternal behaviors.


Assuntos
Agressão/efeitos dos fármacos , Antagonistas de Hormônios/farmacologia , Comportamento Paterno/efeitos dos fármacos , Perciformes/fisiologia , Animais , Arginina Vasopressina/metabolismo , Feminino , Masculino , Comportamento de Nidação/efeitos dos fármacos , Ocitocina/análogos & derivados , Ocitocina/metabolismo , Perciformes/metabolismo , Receptores de Vasopressinas/metabolismo , Comportamento Social , Vasotocina/metabolismo
16.
J Neurochem ; 135(5): 1038-48, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26223348

RESUMO

Neurochemical differences in the hypothalamic-pituitary axis between individuals and between ages may contribute to differential susceptibility to cocaine abuse. This study measured peptide levels in the pituitary gland (Pit) and lateral hypothalamus (LH) in adolescent (age 30 days) and adult (age 65 days) mice from four standard inbred strains, FVB/NJ, DBA/2J, C57BL/6J, and BALB/cByJ, which have previously been characterized for acute locomotor responses to cocaine. Individual peptide profiles were analyzed using mass spectrometric profiling and principal component analysis. Sequences of assigned peptides were verified by tandem mass spectrometry. Principal component analysis classified all strains according to their distinct peptide profiles in Pit samples from adolescent mice, but not adults. Select pro-opiomelanocortin-derived peptides were significantly higher in adolescent BALB/cByJ and DBA/2J mice than in FVB/NJ or C57BL/6J mice. A subset of peptides in the LH, but not in the Pit, was altered by cocaine in adolescents. A 15 mg/kg dose of cocaine induced greater peptide alterations than a 30 mg/kg dose, particularly in FVB/NJ animals, with larger differences in adolescents than adults. Neuropeptides in the LH affected by acute cocaine administration included pro-opiomelanocortin-, myelin basic protein-, and glutamate transporter-derived peptides. The observed peptide differences could contribute to differential behavioral sensitivity to cocaine among strains and ages. Peptides were measured using mass spectrometry (MALDI-TOF) in individual lateral hypothalamus and pituitary samples from four strains and two ages of inbred mice in response to acute cocaine administration. Principal component analyses (PCA) classified the strains according to their peptide profiles from adolescent mice, and a subset of peptides in the lateral hypothalamus was altered by cocaine in adolescents.


Assuntos
Envelhecimento , Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Região Hipotalâmica Lateral , Peptídeos/metabolismo , Hipófise , Animais , Animais Recém-Nascidos , Cromatografia Líquida , Região Hipotalâmica Lateral/efeitos dos fármacos , Região Hipotalâmica Lateral/crescimento & desenvolvimento , Região Hipotalâmica Lateral/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos/metabolismo , Peptídeos/análise , Hipófise/efeitos dos fármacos , Hipófise/crescimento & desenvolvimento , Hipófise/metabolismo , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
Brain Behav Immun ; 44: 82-90, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25176574

RESUMO

Respiratory viral infections are common during the neonatal period in humans, but little is known about how early-life infection impacts brain development. The current study used a neonatal piglet model as piglets have a gyrencephalic brain with growth and development similar to human infants. Piglets were inoculated with porcine reproductive and respiratory syndrome virus (PRRSV) to evaluate how chronic neuroinflammation affects hippocampal neurogenesis and neuron morphology. Piglets in the neurogenesis study received one bromodeoxyuridine injection on postnatal day (PD) 7 and then were inoculated with PRRSV. Piglets were sacrificed at PD 28 and the number of BrdU+ cells and cell fate were quantified in the dentate gyrus. PRRSV piglets showed a 24% reduction in the number of newly divided cells forming neurons. Approximately 15% of newly divided cells formed microglia, but this was not affected by sex or PRRSV. Additionally, there was a sexual dimorphism of new cell survival in the dentate gyrus where males had more cells than females, and PRRSV infection caused a decreased survival in males only. Golgi impregnation was used to characterize dentate granule cell morphology. Sholl analysis revealed that PRRSV caused a change in inner granule cell morphology where the first branch point was extended further from the cell body. Males had more complex dendritic arbors than females in the outer granule cell layer, but this was not affected by PRRSV. There were no changes to dendritic spine density or morphology distribution. These findings suggest that early-life viral infection can impact brain development.


Assuntos
Encefalite/virologia , Hipocampo/crescimento & desenvolvimento , Síndrome Respiratória e Reprodutiva Suína/fisiopatologia , Animais , Animais Recém-Nascidos , Dendritos/patologia , Encefalite/patologia , Encefalite/fisiopatologia , Feminino , Hipocampo/patologia , Hipocampo/fisiopatologia , Masculino , Neurogênese , Neurônios/fisiologia , Neurônios/ultraestrutura , Síndrome Respiratória e Reprodutiva Suína/patologia , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos
18.
Behav Genet ; 44(5): 516-34, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25108455

RESUMO

Daily levels of physical activity vary greatly across individuals and are strongly influenced by genetic background. While moderate levels of physical activity are associated with improved physical and mental health, extremely high levels of physical activity are associated with behavioral disorders such as attention deficit hyperactivity disorder (ADHD). However, the genetic and neurobiological mechanisms relating hyperactivity to ADHD or other behavioral disorders remain unclear. Therefore, we conducted a selective breeding experiment for increased home cage activity starting with a highly genetically variable population of house mice and evaluated the line for correlated responses in other relevant phenotypes. Here we report results through Generation 10. Relative to the Control line, the High-Active line traveled approximately 4 times as far in the home cage (on days 5 and 6 of a 6-day test), displayed reduced body mass at maturity, reduced reproductive success, increased wheel running and open field behavior, decreased performance on the rotarod, decreased performance on the Morris water maze that was not rescued by acute administration of d-amphetamine, reduced hyperactivity from chronically administered low clinical doses of d-amphetamine, and increased numbers of new cells and neuronal activation of the dentate gyrus. Standardized phenotypic differences between the lines were compared to estimates expected from genetic drift to evaluate whether the line differences could have resulted from random effects as opposed to correlated responses to selection. Results indicated line differences in body mass and locomotor responses to low doses of amphetamine were more likely due to selection than drift. The efficacy of low doses of d-amphetamine in ameliorating hyperactivity support the High-Active line as a useful model for exploring the etiology of hyperactivity-associated comorbid behavioral disorders.


Assuntos
Giro Denteado , Modelos Animais de Doenças , Hipercinese/genética , Camundongos Endogâmicos , Atividade Motora/fisiologia , Animais , Comportamento Exploratório/fisiologia , Feminino , Masculino , Camundongos
19.
Exp Physiol ; 99(2): 403-13, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24142456

RESUMO

NEW FINDINGS: What is the central question of this study? We used experimental evolution to determine how selective breeding for high voluntary wheel running and exercise training (7-11 weeks) affect ventilatory chemoreflexes of laboratory mice at rest. What is the main finding and its importance? Selective breeding, although significantly affecting some traits, did not systematically alter ventilation across gas concentrations. As with most human studies, our findings support the idea that endurance training attenuates resting ventilation. However, little evidence was found for a correlation between ventilatory chemoreflexes and the amount of individual voluntary wheel running. We conclude that exercise 'training' alters respiratory behaviours, but these changes may not be necessary to achieve high levels of wheel running. Ventilatory control is affected by genetics, the environment and gene-environment and gene-gene interactions. Here, we used an experimental evolution approach to test whether 37 generations of selective breeding for high voluntary wheel running (genetic effects) and/or long-term (7-11 weeks) wheel access (training effects) alter acute respiratory behaviour of mice resting in normoxic, hypoxic and hypercapnic conditions. As the four replicate high-runner (HR) lines run much more than the four non-selected control (C) lines, we also examined whether the amount of exercise among individual mice was a quantitative predictor of ventilatory chemoreflexes at rest. Selective breeding and/or wheel access significantly affected several traits. In normoxia, HR mice tended to have lower mass-adjusted rates of oxygen consumption and carbon dioxide production. Chronic wheel access increased oxygen consumption and carbon dioxide production in both HR and C mice during hypercapnia. Breathing frequency and minute ventilation were significantly reduced by chronic wheel access in both HR and C mice during hypoxia. Selection history, while significantly affecting some traits, did not systematically alter ventilation across all gas concentrations. As with most human studies, our findings support the idea that endurance training (access to wheel running) attenuates resting ventilation. However, little evidence was found for a correlation at the level of the individual variation between ventilatory chemoreflexes and performance (amount of individual voluntary wheel running). We tentatively conclude that exercise 'training' alters respiratory behaviours, but these changes may not be necessary to achieve high levels of wheel running.


Assuntos
Hipercapnia/fisiopatologia , Hipóxia/fisiopatologia , Condicionamento Físico Animal/fisiologia , Resistência Física/fisiologia , Ventilação Pulmonar/fisiologia , Corrida/fisiologia , Animais , Dióxido de Carbono/metabolismo , Feminino , Hipercapnia/metabolismo , Hipóxia/metabolismo , Camundongos , Atividade Motora/fisiologia , Consumo de Oxigênio/fisiologia
20.
Ecol Evol Physiol ; 97(2): 97-117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728689

RESUMO

AbstractHow traits at multiple levels of biological organization evolve in a correlated fashion in response to directional selection is poorly understood, but two popular models are the very general "behavior evolves first" (BEF) hypothesis and the more specific "morphology-performance-behavior-fitness" (MPBF) paradigm. Both acknowledge that selection often acts relatively directly on behavior and that when behavior evolves, other traits will as well but most with some lag. However, this proposition is exceedingly difficult to test in nature. Therefore, we studied correlated responses in the high-runner (HR) mouse selection experiment, in which four replicate lines have been bred for voluntary wheel-running behavior and compared with four nonselected control (C) lines. We analyzed a wide range of traits measured at generations 20-24 (with a focus on new data from generation 22), coinciding with the point at which all HR lines were reaching selection limits (plateaus). Significance levels (226 P values) were compared across trait types by ANOVA, and we used the positive false discovery rate to control for multiple comparisons. This meta-analysis showed that, surprisingly, the measures of performance (including maximal oxygen consumption during forced exercise) showed no evidence of having diverged between the HR and C lines, nor did any of the life history traits (e.g., litter size), whereas body mass had responded (decreased) at least as strongly as wheel running. Overall, results suggest that the HR lines of mice had evolved primarily by changes in motivation rather than performance ability at the time they were reaching selection limits. In addition, neither the BEF model nor the MPBF model of hierarchical evolution provides a particularly good fit to the HR mouse selection experiment.


Assuntos
Seleção Genética , Animais , Camundongos , Evolução Biológica , Corrida/fisiologia , Corrida/psicologia , Comportamento Animal/fisiologia , Masculino , Feminino , Atividade Motora/fisiologia , Condicionamento Físico Animal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA