Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Animal ; 18(9): 101269, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39216156

RESUMO

Lameness is a common issue on dairy farms, with serious implications for economy and animal welfare. Affected animals may be overlooked until their condition becomes severe. Thus, improved lameness detection methods are needed. In this study, we describe kinematic changes in dairy cows with induced, mild to moderate hindlimb lameness in detail using a "whole-body approach". Thereby, we aimed to identify explicable features to discriminate between lame and non-lame animals for use in future automated surveillance systems. For this purpose, we induced a mild to moderate and fully reversible hindlimb lameness in 16 dairy cows. We obtained 41 straight-line walk measurements (containing > 3 000 stride cycles) using 11 inertial measurement units attached to predefined locations on the cows' upper body and limbs. One baseline and ≥ 1 induction measurement(s) were obtained from each cow. Thirty-one spatial and temporal parameters related to limb movement and inter-limb coordination, upper body vertical displacement symmetry and range of motion (ROMz), as well as pelvic pitch and roll, were calculated on a stride-by-stride basis. For upper body locations, vertical within-stride movement asymmetry was investigated both by calculating within-stride differences between local extrema, and by a signal decomposition approach. For each parameter, the baseline condition was compared with induction condition in linear mixed-effect models, while accounting for stride duration. Significant difference between baseline and induction condition was seen for 23 out of 31 kinematic parameters. Lameness induction was associated with decreased maximum protraction (-5.8%) and retraction (-3.7%) angles of the distal portion of the induced/non-induced limb respectively. Diagonal and lateral dissociation of foot placement (ratio of stride duration) involving the non-induced limb decreased by 8.8 and 4.4%, while diagonal dissociation involving the induced limb increased by 7.7%. Increased within-stride vertical displacement asymmetry of the poll, neck, withers, thoracolumbar junction (back) and tubera sacrale (TS) were seen. This was most notable for the back and poll, where a 40 and 24% increase of the first harmonic amplitude (asymmetric component) and 27 and 14% decrease of the second harmonic amplitude (symmetric component) of vertical displacement were seen. ROMz increased in all these landmarks except for TS. Changes in pelvic roll main components, but not in the range of motion of either pitch or roll angle per stride, were seen. Thus, we identified several kinematic features which may be used in future surveillance systems. Further studies are needed to determine their usefulness in realistic conditions, and to implement methods on farms.


Assuntos
Doenças dos Bovinos , Membro Posterior , Coxeadura Animal , Animais , Coxeadura Animal/fisiopatologia , Fenômenos Biomecânicos , Bovinos/fisiologia , Feminino , Membro Posterior/fisiologia , Membro Posterior/fisiopatologia , Doenças dos Bovinos/fisiopatologia , Marcha , Amplitude de Movimento Articular , Indústria de Laticínios/métodos
2.
Sci Rep ; 13(1): 17117, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816848

RESUMO

In horses, hip hike asymmetry, i.e. left-right difference in hip upwards movement during hind limb protraction in trot, is a crucial lameness sign. Vertical hip movements are complex, influenced by both pelvic roll and pelvic vertical motion. Veterinarians find it challenging to identify low-grade lameness, and knowledge of normal variation is a prerequisite for discerning abnormalities. This study, which included 100 clinically sound Warmblood horses, aimed to describe normal variation in pelvic roll stride patterns. Data were collected during straight-line trot in hand using optical motion capture. Stride-segmented pelvic roll data, normalised with respect to time (0-100% of the stride) and amplitude (± 0.5 of horse average stride range of motion), were modelled as a linear combination of sine and cosine curves. A sine curve with one period per stride and a cosine curve with three periods per stride explained the largest proportions of roll motion: model estimate 0.335 (p < 0.01) and 0.138 (p < 0.01), respectively. Using finite mixture models, the horses could be separated into three groups sharing common pelvic roll characteristics. In conclusion, pelvic roll motion in trot follows a similar basic pattern in most horses, yet there is significant individual variation in the relative prominence of the most characteristic features.


Assuntos
Marcha , Coxeadura Animal , Cavalos , Animais , Coxeadura Animal/diagnóstico , Fenômenos Biomecânicos , Movimento , Pelve , Membro Posterior , Membro Anterior
3.
PLoS One ; 16(7): e0253479, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34288912

RESUMO

The aim of this study is to describe the kinematic gait characteristics of straight line walk in clinically sound dairy cows using body mounted Inertial Measurement Units (IMUs) at multiple anatomical locations. The temporal parameters used are speed and non-speed normalized stance duration, bipedal and tripedal support durations, maximal protraction and retraction angles of the distal limbs and vertical displacement curves of the upper body. Gait analysis was performed by letting 17 dairy cows walk in a straight line at their own chosen pace while equipped with IMU sensors on tubera sacrale, left and right tuber coxae (LTC and RTC), back, withers, head, neck and all four lower limbs. Data intervals with stride by stride regularity were selected based on video data. For temporal parameters, the median was calculated and 95% confidence intervals (CI) were estimated based on linear mixed model (LMM) analysis, while for limb and vertical displacement curves, the median and most typical curves were calculated. The temporal parameters and distal limb angles showed consistent results with low variance and LMM analysis showed non-overlapping CI for all temporal parameters. The distal limb angle curves showed a larger and steeper retraction angle range for the distal front limbs compared with the hind limbs. The vertical displacement curves of the sacrum, withers, LTC and RTC showed a consistent sinusoidal pattern while the head, back and collar curves were less consistent and showed more variation between and within cows. This kinematic description might allow to objectively differentiate between normal and lame gait in the future and determine the best anatomical location for sensor attachment for lameness detection purposes.


Assuntos
Bovinos/fisiologia , Marcha/fisiologia , Caminhada/fisiologia , Animais , Fenômenos Biomecânicos , Feminino , Coxeadura Animal/diagnóstico , Coxeadura Animal/fisiopatologia , Dispositivos Eletrônicos Vestíveis/veterinária
4.
Equine Vet J ; 42(4): 340-5, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20525053

RESUMO

REASONS FOR PERFORMING THE STUDY: The kinematics of the saddle and rider have not been thoroughly described at the walk. OBJECTIVE: To describe saddle and rider movements during collected walk in a group of high-level dressage horses and riders. METHODS: Seven high-level dressage horses and riders were subjected to kinematic measurements while performing collected walk on a treadmill. Movements of the saddle and rider's pelvis, upper body and head were analysed in a rigid body model. Projection angles were determined for the rider's arms and legs, and the neck and trunk of the horse. Distances between selected markers were used to describe rider position in relation to the horse and saddle. RESULTS: During the first half of each hindlimb stance the saddle rotated cranially around the transverse axis, i.e. the front part was lowered in relation to the hind part and the rider's pelvis rotated caudally, i.e. in the opposite direction. The rider's seat moved forwards while the rider's neck and feet moved backwards. During the second half of hindlimb stance these movements were reversed. CONCLUSION: The saddles and riders of high-level dressage horses follow a common movement pattern at collected walk. The movements of the saddle and rider are clearly related to the movements of the horse, both within and outside the sagittal plane. POTENTIAL RELEVANCE: The literature suggests that the rider's influence on the movement pattern of the horse is the strongest at walk. For assessment of the horse-rider interaction in dressage horses presented for unsatisfactory performance, evaluations at walk may therefore be the most rewarding. Basic knowledge about rider and saddle movements in well-performing horses is likely to be supportive to this task.


Assuntos
Cavalos/fisiologia , Caminhada/fisiologia , Animais , Fenômenos Biomecânicos , Teste de Esforço , Marcha/fisiologia
5.
PLoS One ; 15(7): e0236138, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32645084

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0233266.].

6.
PLoS One ; 15(7): e0236181, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32645086

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0233649.].

7.
PLoS One ; 15(6): e0233266, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32492034

RESUMO

For gait classification, hoof-on and hoof-off events are fundamental locomotion characteristics of interest. These events can be measured with inertial measurement units (IMUs) which measure the acceleration and angular velocity in three directions. The aim of this study was to present two algorithms for automatic detection of hoof-events from the acceleration and angular velocity signals measured by hoof-mounted IMUs in walk and trot on a hard surface. Seven Warmblood horses were equipped with two wireless IMUs, which were attached to the lateral wall of the right front (RF) and hind (RH) hooves. Horses were walked and trotted on a lead over a force plate for internal validation. The agreement between the algorithms for the acceleration and angular velocity signals with the force plate was evaluated by Bland Altman analysis and linear mixed model analysis. These analyses were performed for both hoof-on and hoof-off detection and for both algorithms separately. For the hoof-on detection, the angular velocity algorithm was the most accurate with an accuracy between 2.39 and 12.22 ms and a precision of around 13.80 ms, depending on gait and hoof. For hoof-off detection, the acceleration algorithm was the most accurate with an accuracy of 3.20 ms and precision of 6.39 ms, independent of gait and hoof. These algorithms look highly promising for gait classification purposes although the applicability of these algorithms should be investigated under different circumstances, such as different surfaces and different hoof trimming conditions.


Assuntos
Algoritmos , Análise da Marcha/veterinária , Marcha/fisiologia , Cavalos/fisiologia , Aceleração , Animais , Fenômenos Biomecânicos , Feminino , Membro Anterior/fisiologia , Análise da Marcha/instrumentação , Análise da Marcha/estatística & dados numéricos , Membro Posterior/fisiologia , Casco e Garras/fisiologia , Modelos Lineares , Masculino , Tecnologia de Sensoriamento Remoto/instrumentação , Tecnologia de Sensoriamento Remoto/estatística & dados numéricos , Tecnologia de Sensoriamento Remoto/veterinária , Corrida/fisiologia , Caminhada/fisiologia , Tecnologia sem Fio/instrumentação , Tecnologia sem Fio/estatística & dados numéricos
8.
PLoS One ; 15(5): e0233649, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32469939

RESUMO

A prolonged break-over phase might be an indication of a variety of musculoskeletal disorders and can be measured with optical motion capture (OMC) systems, inertial measurement units (IMUs) and force plates. The aim of this study was to present two algorithms for automatic detection of the break-over phase onset from the acceleration and angular velocity signals measured by hoof-mounted IMUs in walk and trot on a hard surface. The performance of these algorithms was evaluated by internal validation with an OMC system and a force plate separately. Seven Warmblood horses were equipped with two wireless IMUs which were attached to the lateral wall of the right front (RF) and hind (RH) hooves. Horses were walked and trotted over a force plate for internal validation while simultaneously the 3D position of three reflective markers, attached to lateral heel, lateral toe and lateral coronet of each hoof, were measured by six infrared cameras of an OMC system. The performance of the algorithms was evaluated by linear mixed model analysis. The acceleration algorithm was the most accurate with an accuracy between -9 and 23 ms and a precision around 24 ms (against OMC system), and an accuracy between -37 and 20 ms and a precision around 29 ms (against force plate), depending on gait and hoof. This algorithm seems promising for quantification of the break-over phase onset although the applicability for clinical purposes, such as lameness detection and evaluation of trimming and shoeing techniques, should be investigated more in-depth.


Assuntos
Casco e Garras/fisiologia , Doenças dos Cavalos/diagnóstico , Cavalos/fisiologia , Doenças Musculoesqueléticas/veterinária , Algoritmos , Animais , Fenômenos Biomecânicos , Técnicas Biossensoriais , Casco e Garras/fisiopatologia , Doenças dos Cavalos/fisiopatologia , Doenças Musculoesqueléticas/diagnóstico , Doenças Musculoesqueléticas/fisiopatologia , Fenômenos Fisiológicos Musculoesqueléticos , Caminhada , Tecnologia sem Fio
9.
Sci Rep ; 10(1): 17785, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082367

RESUMO

For centuries humans have been fascinated by the natural beauty of horses in motion and their different gaits. Gait classification (GC) is commonly performed through visual assessment and reliable, automated methods for real-time objective GC in horses are warranted. In this study, we used a full body network of wireless, high sampling-rate sensors combined with machine learning to fully automatically classify gait. Using data from 120 horses of four different domestic breeds, equipped with seven motion sensors, we included 7576 strides from eight different gaits. GC was trained using several machine-learning approaches, both from feature-extracted data and from raw sensor data. Our best GC model achieved 97% accuracy. Our technique facilitated accurate, GC that enables in-depth biomechanical studies and allows for highly accurate phenotyping of gait for genetic research and breeding. Our approach lends itself for potential use in other quadrupedal species without the need for developing gait/animal specific algorithms.


Assuntos
Automação/métodos , Simulação por Computador , Marcha , Cavalos , Processamento de Imagem Assistida por Computador/métodos , Coxeadura Animal/diagnóstico , Aprendizado de Máquina , Algoritmos , Animais , Fenômenos Biomecânicos , Movimento (Física) , Fenótipo
10.
Equine Vet J ; 41(3): 280-4, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19469236

RESUMO

REASONS FOR PERFORMING STUDY: A comprehensive kinematic description of rider and saddle movements is not yet present in the scientific literature. OBJECTIVE: To describe saddle and rider movements in a group of high-level dressage horses and riders. METHOD: Seven high-level dressage horses and riders were subjected to kinematic measurements while performing collected trot on a treadmill. For analysis a rigid body model for the saddle and core rider segments, projection angles of the rider's extremities and the neck and trunk of the horse, and distances between markers selected to indicate rider position were used. RESULTS: For a majority of the variables measured it was possible to describe a common pattern for the group. Rotations around the transverse axis (pitch) were generally biphasic for each diagonal. During the first half of stance the saddle rotated anti-clockwise and the rider's pelvis clockwise viewed from the right and the rider's lumbar back extended. During the later part of stance and the suspension phase reverse pitch rotations were observed. Rotations of the saddle and core rider segments around the longitudinal (roll) and vertical axes (yaw) changed direction only around time of contact of each diagonal. CONCLUSION: The saddles and riders of high-level dressage horses follow a common movement pattern at collected trot. The movements of the saddle and rider are clearly related to the movements of the horse and saddle movements also seem to be influenced by the rider. POTENTIAL RELEVANCE: Knowledge about rider and saddle movements can further our understanding of, and hence possibilities to prevent, orthopaedic injuries related to the exposure of the horse to a rider and saddle.


Assuntos
Marcha/fisiologia , Cavalos/fisiologia , Animais , Fenômenos Biomecânicos , Teste de Esforço
11.
Equine Vet J ; 41(3): 297-300, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19469239

RESUMO

REASONS FOR PERFORMING STUDY: Treadmill locomotion is frequently used for training of sport horses, for diagnostic purposes and for research. Identification of the possible biomechanical differences and similarities between the back movement during treadmill (T) and over ground (O) locomotion is essential for the correct interpretation of research results. OBJECTIVES: To compare the kinematics of the thoracolumbar vertebral column in treadmill and over ground locomotion in healthy horses. METHODS: Six sound Dutch Warmblood horses trotted on a T and O during 10 s at their own preferred velocity (mean +/- s.d. 3.6 +/- 0.3 m/s T and 3.6 +/- 0.1 m/s O), which was the same in both conditions. Kinematics of the vertebral column was captured by infrared cameras using reflective skin markers attached over the spinous processes of selected vertebrae and other locations. Flexion-extension and lateral bending range of motion (ROM), angular motion pattern (AMP) and intravertebral pattern symmetry (IVPS) of 5 vertebral angles (T6-T10-T13, T10-T13-T17, T13-T17-L1, T17-L1-L3 and L1-L3-15) were calculated. Neck angle, linear and temporal stride parameters and protraction-retraction angles of the limbs were also calculated. RESULTS: The vertical ROM (flexion-extension) was similar in both conditions, but the horizontal ROM (lateral bending) of the lumbar angles T17-L1-L3 and L1-L3-L5 was less during T locomotion (mean +/- s.d. difference of 1.8 +/- 0.6 and 1.7 +/- 0.9 degrees, respectively, P > 0.05). During O locomotion, the symmetry pattern of the lumbar vertebral angles was diminished from 0.9 to 0.7 (1 = 100% symmetry) indicating increased irregularity of the movement (P > 0.05). No differences were found in the basic linear and temporal stride parameters and neck angle. POTENTIAL RELEVANCE: Vertebral kinematics during treadmill locomotion is not identical to over ground locomotion, but the differences are minor. During treadmill locomotion lumbar motion is less, and caution should be therefore taken when interpreting lumbar kinematics.


Assuntos
Dorso/fisiologia , Marcha/fisiologia , Cavalos/fisiologia , Animais , Fenômenos Biomecânicos , Teste de Esforço
12.
Equine Vet J ; 41(3): 274-9, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19469235

RESUMO

REASONS FOR PERFORMING STUDY: Dressage involves training of the horse with the head and neck placed in a position defined by the rider. The best position for dressage training is currently under debate among riders and trainers, but there are few scientific data available to confirm or disprove the different views. OBJECTIVE: To evaluate the kinematic effects of different head and neck positions (HNPs) in elite dressage horses ridden at trot. METHODS: Seven high-level dressage horses were subjected to kinetic and kinematic measurements when ridden on a treadmill with the head and neck in 5 different positions. RESULTS: Compared to free trot on loose reins the HNP desired for collected trot at dressage competitions increased T6 vertical excursion, increased sacral flexion and decreased limb retraction after lift-off. Further increasing head or head and neck flexion caused few additional changes while an extremely elevated neck position increased hindlimb flexion and lumbar back extension during stance, increased hindlimb flexion during swing and further increased trunk vertical excursion. CONCLUSIONS: The movements of the horse are significantly different when ridden on loose reins compared to the position used in collected trot. The exact degree of neck flexion is, however, not consistently correlated to the movements of the horse's limbs and trunk at collected trot. An extremely elevated neck position can produce some effects commonly associated with increased degree of collection, but the increased back extension observed with this position may place the horse at risk of injury if ridden in this position for a prolonged period. POTENTIAL RELEVANCE: Head and neck positions influence significantly the kinematics of the ridden horse. It is important for riders and trainers to be aware of these effects in dressage training.


Assuntos
Marcha/fisiologia , Cabeça , Membro Posterior/fisiologia , Cavalos/fisiologia , Pescoço , Animais , Fenômenos Biomecânicos
13.
Equine Vet J ; 41(3): 292-6, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19469238

RESUMO

REASONS FOR PERFORMING STUDY: At rising trot the rider sits alternately down on one diagonal pair of limbs and rises up on the other. The possible effects on asymmetry of locomotion induced by rising trot have rarely been studied. OBJECTIVES: To demonstrate whether, and if so to what extent, rising trot causes asymmetrical loading in the vertical ground reaction force (VGRF) and/or asymmetrical effects on the locomotion pattern, comparing left and right side. METHODS: Seven elite horses were ridden in left and right rising trot on a treadmill, while VGRF and kinematics were measured, with the horses' neck raised, the poll high and the bridge of the nose slightly in front of the vertical. RESULTS: Force loading was generally increased in the limbs of the sitting diagonal. The lumbar back was lower between mid-stances of the sitting and nonsitting stance, pelvic roll was limited and the tuber coxae heights were lower on the sitting side. Maximal hindlimb protraction was decreased. Forelimb retraction was increased and the T6 height decreased. CONCLUSION: The rider movement induces an uneven biphasic load that affects the back, pelvis and limb kinematics and VGRF. POTENTIAL RELEVANCE: The generally advocated technique of alternating limbs when riding in rising trot is supported. The VGRF changes between rising on the left or right diagonal were distinct, but minor in absolute terms and therefore unlikely to have direct impact on the occurrence of locomotor injuries. Knowledge of an increase of asymmetry in rising trot is potentially useful for riders/trainers.


Assuntos
Marcha/fisiologia , Cavalos/fisiologia , Animais , Fenômenos Biomecânicos , Teste de Esforço , Membro Anterior , Membro Posterior , Locomoção
14.
Vet J ; 234: 11-23, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29680381

RESUMO

Quantitative gait analysis has the potential to offer objective and unbiased gait information that can assist clinical decision-making. In recent years, a growing number of gait analysis systems have come onto the market, highlighting the demand for such technology in equine orthopaedics. However, it is imperative that the measured variables which are used as outcome parameters are supported by scientific evidence and that the interpretation of such measurements is backed by a proper understanding of the biomechanical principles of equine locomotion. This review, which is based on studies on experimentally induced lameness, summarises the currently most widely used methods for gait analysis and the available evidence concerning gait parameters that can be used to quantify gait changes due to lameness. These are discussed regarding their current and future potential for routine clinical application.


Assuntos
Tomada de Decisões , Doenças dos Cavalos/diagnóstico , Coxeadura Animal , Animais , Fenômenos Biomecânicos , Marcha , Cavalos , Coxeadura Animal/diagnóstico , Locomoção/fisiologia
15.
Equine Vet J ; 50(1): 117-124, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28548349

RESUMO

BACKGROUND: Horses show compensatory head movement in hindlimb lameness and compensatory pelvis movement in forelimb lameness but little is known about the relationship of withers movement symmetry with head and pelvic asymmetry in horses with naturally occurring gait asymmetries. OBJECTIVES: To document head, withers and pelvic movement asymmetry and timing differences in horses with naturally occurring gait asymmetries. STUDY DESIGN: Retrospective analysis of gait data. METHODS: Head, withers and pelvic movement asymmetry and timing of displacement minima and maxima were quantified from inertial sensors in 163 Thoroughbreds during trot-ups on hard ground. Horses were divided into 4 subgroups using the direction of head and withers movement asymmetry. Scatter plots of head vs. pelvic movement asymmetry illustrated how the head-withers relationship distinguishes between contralateral and ipsilateral head-pelvic movement asymmetry. Independent t test or Mann-Whitney U test (P<0.05) compared pelvic movement asymmetry and timing differences between groups. RESULTS: The relationship between head and withers asymmetry (i.e. same sided or opposite sided asymmetry) predicts the relationship between head and pelvic asymmetry in 69-77% of horses. Pelvic movement symmetry was significantly different between horses with same sign vs. opposite sign of head-withers asymmetry (P<0.0001). Timing of the maximum head height reached after contralateral ('sound') stance was delayed compared to withers (P = 0.02) and pelvis (P = 0.04) in horses with contralateral head-withers asymmetry. MAIN LIMITATIONS: The clinical lameness status of the horses was not investigated. CONCLUSION: In the Thoroughbreds with natural gait asymmetries investigated here, the direction of head vs. withers movement asymmetry identifies the majority of horses with ipsilateral and contralateral head and pelvic movement asymmetries. Withers movement should be further investigated for differentiating between forelimb and hindlimb lame horses. Horses with opposite sided head and withers asymmetry significantly delay the upward movement of the head after 'sound' forelimb stance.


Assuntos
Dorso/fisiologia , Marcha , Cabeça , Cavalos/fisiologia , Movimento , Pelve/fisiologia , Animais , Fenômenos Biomecânicos , Condicionamento Físico Animal , Estudos Retrospectivos , Esportes
16.
Equine Vet J ; 50(3): 370-376, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29032614

RESUMO

BACKGROUND: Objective gait analysis is becoming more popular as a tool assisting veterinarians during the clinical lameness exam. At present, there is only limited information on the effect of misplacement of markers/motion-sensors. OBJECTIVES: To investigate and describe the effect of marker misplacement on commonly calculated pelvic symmetry parameters. STUDY DESIGN: Experimental study. METHODS: Each horse was equipped with custom-made devices consisting of several reflective markers arranged in a predefined manner with a reference marker correctly positioned regarding the anatomical landmark and several misplaced markers along the sagittal and transverse planes. Linear regression analysis was used to estimate the effect of marker misplacement. RESULTS: For the tubera sacrale, each cm of left/right misplacement led to a difference in minimum position of the pelvis (PDmin) of ±1.67 mm (95% CI 1.54-1.8 mm) (P<0.001); maximum position of the pelvis (PDmax) was affected by ±0.2 mm (95% CI 0.071-0.33 mm) (P = 0.003). With respect to cranial/caudal misplacement, each cm of misplacement resulted in a PDmin difference of ±0.04 mm (95% CI -0.09 to 0.16 mm) (P = 0.56) and a PDmax difference of ±0.008 mm (95% CI -0.13 to 0.12 mm) (P = 0.9). For the tubera coxae, each cm of vertical misplacement led to a difference in the displacement amplitude between left and right tubera coxae (Hip-Hike_Diff) of ±1.56 mm (95% CI 1.35-1.77 mm) (P<0.001); for the cranial/caudal misplacement, this was ±0.82 mm (95% CI 0.66-0.97 mm) (P<0.001). MAIN LIMITATIONS: Only three horses were used in this experiment and the study design did not permit to determine the influence of marker misplacement on the evaluation of different degrees of lameness. CONCLUSIONS: Marker misplacement significantly affects calculated symmetry parameters of the pelvis. The observed errors are overall small but significant. In cases of mildly asymmetrical horses, this error might influence the decision-making process whereas in more severe asymmetries, the influence of the error effect may become less significant.


Assuntos
Marcha , Membro Posterior/fisiologia , Doenças dos Cavalos/diagnóstico , Cavalos/fisiologia , Coxeadura Animal/diagnóstico , Animais , Fenômenos Biomecânicos , Pelve
17.
Equine Vet J ; 50(6): 818-824, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29658147

RESUMO

BACKGROUND: The main criteria for lameness assessment in horses are head movement for forelimb lameness and pelvic movement for hindlimb lameness. However, compensatory head nod in horses with primary hindlimb lameness is a well-known phenomenon. This compensatory head nod movement can be easily misinterpreted as a sign of primary ipsilateral forelimb lameness. Therefore, discriminating compensatory asymmetries from primary directly pain-related movement asymmetries is a prerequisite for successful lameness assessment. OBJECTIVES: To investigate the association between head, withers and pelvis movement asymmetry in horses with induced forelimb and hindlimb lameness. STUDY DESIGN: Experimental study. METHODS: In 10 clinically sound Warmblood riding horses, forelimb and hindlimb lameness were induced using a sole pressure model. The horses were then trotted on a treadmill. Three-dimensional optical motion capture was used to collect kinematic data from reflective markers attached to the poll, withers and tubera sacrale. The magnitude and side (left or right) of the following symmetry parameters, vertical difference in minimum position, maximum position and range-up were calculated for head, withers, and pelvis. Mixed models were used to analyse data from induced forelimb and hindlimb lameness. RESULTS: For each mm increase in pelvic asymmetry in response to hindlimb lameness induction, withers movement asymmetry increased by 0.35-0.55 mm, but towards the contralateral side. In induced forelimb lameness, for each mm increase in head movement asymmetry, withers movement asymmetry increased by 0.05-0.10 mm, in agreement with the head movement asymmetry direction, both indicating lameness in the induced forelimb. MAIN LIMITATIONS: Results must be confirmed in clinically lame horses trotting overground. CONCLUSIONS: The vertical asymmetry pattern of the withers discriminated a head nod associated with true forelimb lameness from the compensatory head movement asymmetry caused by primary hindlimb lameness. Measuring movement symmetry of the withers may, thus, aid in determining primary lameness location.


Assuntos
Membro Anterior/fisiopatologia , Marcha/fisiologia , Membro Posterior/fisiopatologia , Doenças dos Cavalos/fisiopatologia , Coxeadura Animal/fisiopatologia , Animais , Fenômenos Biomecânicos , Cabeça/fisiopatologia , Cavalos , Masculino , Esportes
18.
PLoS One ; 13(7): e0200534, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30020982

RESUMO

Saddle slip, defined as a progressive lateral displacement of the saddle during ridden exercise, has recently been given attention in the scientific press as a potential sign of lameness. The aim of this study was to objectively quantify the normal lateral movement (oscillations) of the saddle relative to the horse in non-lame horses, and associate this movement to the movements of the horse and rider. Data from seven Warmblood dressage horses competing at Grand Prix (n = 6) or FEI Intermediate (n = 1) level, ridden by their usual riders, were used. Simultaneous kinetic, kinematic and saddle pressure measurements were conducted during sitting and rising trot on a force-measuring treadmill. The maximum lateral movement of the caudal part of the saddle relative to the horse's spine (MAX) was determined for each diagonal step. A mixed model was applied, with MAX as outcome, and T6 and S3 vertical position, rigid body rotation angles (roll, pitch, yaw) of the horse's and rider's pelvis, vertical ground reaction forces, saddle force, and rider position (rising in rising trot, sitting in rising trot or sitting in sitting trot) as explanatory variables. The least square means for MAX were 14.3 (SE 4.7) mm and 23.9 (SE 4.7) mm for rising and sitting in rising trot, and 20.3 (SE 4.7) mm for sitting trot. A 10 mm increase in maximum pelvic height at push off increased MAX by 1.4 mm (p<0.0001). One degree increase in rider pelvis roll decreased MAX 1.1 mm, and one degree increase in rider pelvis yaw increased MAX 0.7 mm (both p<0.0001). The linear relationships found between MAX and movements of both horse and rider implies that both horse and rider movement asymmetries are reflected in the lateral movements or oscillations of the saddle in non-lame horses.


Assuntos
Cavalos/fisiologia , Modelos Biológicos , Coluna Vertebral/fisiologia , Caminhada , Animais , Cavalos/anatomia & histologia , Coluna Vertebral/anatomia & histologia
19.
Vet J ; 222: 54-59, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28283369

RESUMO

Lameness detection can be challenging in dogs, as reflected in the reported low inter-rater agreement when visually assessing lameness. The aim of this study was to use an inertial sensor-based system to detect and quantify induced distal and proximal limb disturbances mimicking supporting and swinging limb lameness in dogs trotting on a treadmill by measuring vertical head and pelvic movement symmetry. Ten clinically sound dogs were equipped with inertial measurement units that were attached to the head, pelvis and right distal forelimb. Vertical head and pelvic movement symmetry were measured while dogs trotted on a treadmill, before and after the induction of moderate support or swinging fore- and hindlimb lameness. Four symmetry variables were calculated: the differences in displacement between the two lowest and between the two highest values of the head and pelvis per stride, respectively. These variables were defined as minimum head difference (HDmin), maximum head difference (HDmax), minimum pelvic difference (PDmin) and maximum pelvic difference (PDmax). Induction of supporting forelimb and hindlimb lameness produced significant changes in HDmin and PDmin, respectively. Swinging forelimb and hindlimb lameness produced significant changes in HDmax and PDmax, respectively. Additional compensatory ipsilateral forelimb and contralateral hindlimb movements were detected. Based on our findings, inertial sensor-based systems can be used to detect and quantify induced moderate lameness and differentiate between supporting and swinging limb lameness in dogs trotting on a treadmill. Further studies are needed to evaluate this method in dogs presented for clinical lameness evaluation and in overground locomotion.


Assuntos
Acelerometria/veterinária , Doenças do Cão/diagnóstico , Coxeadura Animal/diagnóstico , Acelerometria/instrumentação , Animais , Cães , Feminino , Marcha , Masculino
20.
Vet J ; 229: 13-18, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29183568

RESUMO

Compensatory limb loading has been studied in lame dogs; however, little is known about how these compensations relate to motion of the head and pelvis, assessment of which is an important component of lameness examinations. The aim of this study was to describe the patterns of vertical head and pelvic motion symmetry at the trot in dogs with induced supporting limb lameness in the forelimbs or hind limbs. Ten sound dogs were trotted on a treadmill before and after temporary induction of moderate lameness (grade 2/5) in each limb. Reflective markers were located on the head, pelvis and right forelimb, and kinematic data were captured with a motion capture system. Upper body symmetry parameters were calculated, including differences in the highest (HDmax) and in the lowest (HDmin) positions of the head, and in the highest (PDmax) and in the lowest (PDmin) positions of the mid-pelvis, with a value of zero indicating symmetry. The head was lowered more during the sound limb stance phase and lowered less during the lame limb stance phase in supporting forelimb lameness (HDmin: 4.6mm in dogs when sound, -18.3mm when left limb lameness was induced and 20.5mm when right limb lameness was induced). The mid-pelvis was lowered more during the sound limb stance phase and lowered and lifted less during the lame limb stance phase in supporting hind limb lameness (PDmin: 1mm in dogs when sound, -10.1mm in left limb lameness and 8.4mm in right limb lameness). The hip of the lame side, measured at the level of the greater trochanter, had an increased downwards displacement during the lame limb swing phase (-21mm in left hind limb lameness, P=0.005; 23.4mm in right hind limb lameness, P=0.007). Asymmetry in the lowering of the head or mid-pelvis is a more sensitive indicator of supporting forelimb and hind limb lameness, respectively, than asymmetry in the raising of the head. Increased displacement of the hip ('hip drop' of the lame side during its swing phase) is a good indicator of hind limb lameness in dogs.


Assuntos
Doenças do Cão/fisiopatologia , Marcha , Cabeça/fisiologia , Membro Posterior/fisiopatologia , Pelve/fisiologia , Animais , Fenômenos Biomecânicos , Cães , Teste de Esforço , Feminino , Membro Anterior/fisiopatologia , Coxeadura Animal/fisiopatologia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA