Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
1.
Nature ; 623(7985): 149-156, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37880367

RESUMO

Host factors that mediate Leishmania genetic exchange are not well defined. Here we demonstrate that natural IgM (IgMn)1-4 antibodies mediate parasite genetic exchange by inducing the transient formation of a spherical parasite clump that promotes parasite fusion and hybrid formation. We establish that IgMn from Leishmania-free animals binds to the surface of Leishmania parasites to induce significant changes in the expression of parasite transcripts and proteins. Leishmania binding to IgMn is partially lost after glycosidase treatment, although parasite surface phosphoglycans, including lipophosphoglycan, are not required for IgMn-induced parasite clumping. Notably, the transient formation of parasite clumps is essential for Leishmania hybridization in vitro. In vivo, we observed a 12-fold increase in hybrid formation in sand flies provided a second blood meal containing IgMn compared with controls. Furthermore, the generation of recombinant progeny from mating hybrids and parental lines were only observed in sand flies provided with IgMn. Both in vitro and in vivo IgM-induced Leishmania crosses resulted in full genome hybrids that show equal patterns of biparental contribution. Leishmania co-option of a host natural antibody to facilitate mating in the insect vector establishes a new paradigm of parasite-host-vector interdependence that contributes to parasite diversity and fitness by promoting genetic exchange.


Assuntos
Interações Hospedeiro-Parasita , Imunoglobulina M , Leishmania , Psychodidae , Reprodução , Animais , Hibridização Genética , Imunoglobulina M/imunologia , Leishmania/genética , Leishmania/imunologia , Psychodidae/imunologia , Psychodidae/parasitologia , Reprodução/genética , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Regulação da Expressão Gênica , Glicosídeo Hidrolases/metabolismo
2.
Blood ; 141(25): 3109-3121, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947859

RESUMO

Inhibitors of complement and coagulation are present in the saliva of a variety of blood-feeding arthropods that transmit parasitic and viral pathogens. Here, we describe the structure and mechanism of action of the sand fly salivary protein lufaxin, which inhibits the formation of the central alternative C3 convertase (C3bBb) and inhibits coagulation factor Xa (fXa). Surface plasmon resonance experiments show that lufaxin stabilizes the binding of serine protease factor B (FB) to C3b but does not detectably bind either C3b or FB alone. The crystal structure of the inhibitor reveals a novel all ß-sheet fold containing 2 domains. A structure of the lufaxin-C3bB complex obtained via cryo-electron microscopy (EM) shows that lufaxin binds via its N-terminal domain at an interface containing elements of both C3b and FB. By occupying this spot, the inhibitor locks FB into a closed conformation in which proteolytic activation of FB by FD cannot occur. C3bB-bound lufaxin binds fXa at a separate site in its C-terminal domain. In the cryo-EM structure of a C3bB-lufaxin-fXa complex, the inhibitor binds to both targets simultaneously, and lufaxin inhibits fXa through substrate-like binding of a C-terminal peptide at the active site as well as other interactions in this region. Lufaxin inhibits complement activation in ex vivo models of atypical hemolytic uremic syndrome (aHUS) and paroxysmal nocturnal hemoglobinuria (PNH) as well as thrombin generation in plasma, providing a rationale for the development of a bispecific inhibitor to treat complement-related diseases in which thrombosis is a prominent manifestation.


Assuntos
Coagulação Sanguínea , Fator B do Complemento , Microscopia Crioeletrônica , Fator B do Complemento/química , Fator B do Complemento/metabolismo , Ativação do Complemento , Serina Endopeptidases , Complemento C3b/química
3.
J Proteome Res ; 23(4): 1471-1487, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38576391

RESUMO

In arthropods, hemolymph carries immune cells and solubilizes and transports nutrients, hormones, and other molecules that are involved in diverse physiological processes including immunity, metabolism, and reproduction. However, despite such physiological importance, little is known about its composition. We applied mass spectrometry-based label-free quantification approaches to study the proteome of hemolymph perfused from sugar-fed female and male Aedes aegypti mosquitoes. A total of 1403 proteins were identified, out of which 447 of them were predicted to be extracellular. In both sexes, almost half of these extracellular proteins were predicted to be involved in defense/immune response, and their relative abundances (based on their intensity-based absolute quantification, iBAQ) were 37.9 and 33.2%, respectively. Interestingly, among them, 102 serine proteases/serine protease-homologues were identified, with almost half of them containing CLIP regulatory domains. Moreover, proteins belonging to families classically described as chemoreceptors, such as odorant-binding proteins (OBPs) and chemosensory proteins (CSPs), were also highly abundant in the hemolymph of both sexes. Our data provide a comprehensive catalogue of A. aegypti hemolymph basal protein content, revealing numerous unexplored targets for future research on mosquito physiology and disease transmission. It also provides a reference for future studies on the effect of blood meal and infection on hemolymph composition.


Assuntos
Aedes , Humanos , Animais , Masculino , Feminino , Aedes/metabolismo , Açúcares/metabolismo , Hemolinfa/metabolismo , Proteômica , Carboidratos
4.
BMC Genomics ; 24(1): 135, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941562

RESUMO

INTRODUCTION: During evolution, blood-feeding arthropods developed a complex salivary mixture that can interfere with host haemostatic and immune response, favoring blood acquisition and pathogen transmission. Therefore, a survey of the salivary gland contents can lead to the identification of molecules with potent pharmacological activity in addition to increase our understanding of the molecular mechanisms underlying the hematophagic behaviour of arthropods. The southern house mosquito, Culex quinquefasciatus, is a vector of several pathogenic agents, including viruses and filarial parasites that can affect humans and wild animals. RESULTS: Previously, a Sanger-based transcriptome of the salivary glands (sialome) of adult C. quinquefasciatus females was published based on the sequencing of 503 clones organized into 281 clusters. Here, we revisited the southern mosquito sialome using an Illumina-based RNA-sequencing approach of both male and female salivary glands. Our analysis resulted in the identification of 7,539 coding DNA sequences (CDS) that were functionally annotated into 25 classes, in addition to 159 long non-coding RNA (LncRNA). Additionally, comparison of male and female libraries allowed the identification of female-enriched transcripts that are potentially related to blood acquisition and/or pathogen transmission. CONCLUSION: Together, these findings represent an extended reference for the identification and characterization of the proteins containing relevant pharmacological activity in the salivary glands of C. quinquefasciatus mosquitoes.


Assuntos
Culex , Culicidae , Humanos , Animais , Masculino , Feminino , Culex/genética , Culex/metabolismo , Culicidae/genética , Mosquitos Vetores/genética , Proteínas/metabolismo , Transcriptoma
5.
J Biol Chem ; 297(5): 101322, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34688666

RESUMO

The salivary glands of the flea Xenopsylla cheopis, a vector of the plague bacterium, Yersinia pestis, express proteins and peptides thought to target the hemostatic and inflammatory systems of its mammalian hosts. Past transcriptomic analyses of salivary gland tissue revealed the presence of two similar peptides (XC-42 and XC-43) having no extensive similarities to any other deposited sequences. Here we show that these peptides specifically inhibit coagulation of plasma and the amidolytic activity of α-thrombin. XC-43, the smaller of the two peptides, is a fast, tight-binding inhibitor of thrombin with a dissociation constant of less than 10 pM. XC-42 exhibits similar selectivity as well as kinetic and binding properties. The crystal structure of XC-43 in complex with thrombin shows that despite its substrate-like binding mode, XC-43 is not detectably cleaved by thrombin and that it interacts with the thrombin surface from the enzyme catalytic site through the fibrinogen-binding exosite I. The low rate of hydrolysis was verified in solution experiments with XC-43, which show the substrate to be largely intact after 2 h of incubation with thrombin at 37 °C. The low rate of XC-43 cleavage by thrombin may be attributable to specific changes in the catalytic triad observable in the crystal structure of the complex or to extensive interactions in the prime sites that may stabilize the binding of cleavage products. Based on the increased arterial occlusion time, tail bleeding time, and blood coagulation parameters in rat models of thrombosis XC-43 could be valuable as an anticoagulant.


Assuntos
Anticoagulantes/química , Antitrombinas/química , Proteínas de Insetos/química , Glândulas Salivares/química , Proteínas e Peptídeos Salivares/química , Trombina , Xenopsylla/química , Animais , Humanos , Ratos , Trombina/antagonistas & inibidores , Trombina/química , Xenopsylla/metabolismo
6.
PLoS Pathog ; 16(1): e1008288, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31961911

RESUMO

Insects rely on the innate immune system for defense against pathogens, some aspects of which are under hormonal control. Here we provide direct experimental evidence showing that the juvenile hormone-binding protein (mJHBP) of Aedes aegypti is required for the regulation of innate immune responses and the development of mosquito blood cells (hemocytes). Using an mJHBP-deficient mosquito line generated by means of CRISPR-Cas9 gene editing technology we uncovered a mutant phenotype characterized by immunosuppression at the humoral and cellular levels, which profoundly affected susceptibility to bacterial infection. Bacteria-challenged mosquitoes exhibited significantly higher levels of septicemia and mortality relative to the wild type (WT) strain, delayed expression of antimicrobial peptides (AMPs), severe developmental dysregulation of embryonic and larval hemocytes (reduction in the total number of hemocytes) and increased differentiation of the granulocyte lineage. Interestingly, injection of recombinant wild type mJHBP protein into adult females three-days before infection was sufficient to restore normal immune function. Similarly, injection of mJHBP into fourth-instar larvae fully restored normal larval/pupal hemocyte populations in emerging adults. More importantly, the recovery of normal immuno-activation and hemocyte development requires the capability of mJHBP to bind JH III. These results strongly suggest that JH III functions in mosquito immunity and hemocyte development in a manner that is perhaps independent of canonical JH signaling, given the lack of developmental and reproductive abnormalities. Because of the prominent role of hemocytes as regulators of mosquito immunity, this novel discovery may have broader implications for the understanding of vector endocrinology, hemocyte development, vector competence and disease transmission.


Assuntos
Aedes/crescimento & desenvolvimento , Aedes/imunologia , Proteínas de Transporte/imunologia , Proteínas de Insetos/imunologia , Aedes/genética , Aedes/microbiologia , Animais , Proteínas de Transporte/genética , Feminino , Hemócitos/imunologia , Hemócitos/microbiologia , Imunidade Inata , Proteínas de Insetos/genética , Hormônios Juvenis/imunologia , Larva/genética , Larva/crescimento & desenvolvimento , Larva/imunologia , Larva/microbiologia , Masculino , Serratia marcescens/fisiologia
7.
Proc Natl Acad Sci U S A ; 116(14): 7053-7061, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30872477

RESUMO

Unlike the case in Asia and Latin America, Plasmodium vivax infections are rare in sub-Saharan Africa due to the absence of the Duffy blood group antigen (Duffy antigen), the only known erythrocyte receptor for the P. vivax merozoite invasion ligand, Duffy binding protein 1 (DBP1). However, P. vivax infections have been documented in Duffy-negative individuals throughout Africa, suggesting that P. vivax may use ligands other than DBP1 to invade Duffy-negative erythrocytes through other receptors. To identify potential P. vivax ligands, we compared parasite gene expression in Saimiri and Aotus monkey erythrocytes infected with P. vivax Salvador I (Sal I). DBP1 binds Aotus but does not bind to Saimiri erythrocytes; thus, P. vivax Sal I must invade Saimiri erythrocytes independent of DBP1. Comparing RNA sequencing (RNAseq) data for late-stage infections in Saimiri and Aotus erythrocytes when invasion ligands are expressed, we identified genes that belong to tryptophan-rich antigen and merozoite surface protein 3 (MSP3) families that were more abundantly expressed in Saimiri infections compared with Aotus infections. These genes may encode potential ligands responsible for P. vivax infections of Duffy-negative Africans.


Assuntos
Antígenos de Protozoários/metabolismo , Sistema do Grupo Sanguíneo Duffy/metabolismo , Eritrócitos/parasitologia , Perfilação da Expressão Gênica , Malária Vivax/metabolismo , Plasmodium vivax/metabolismo , Proteínas de Protozoários/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Antígenos de Protozoários/genética , Sistema do Grupo Sanguíneo Duffy/genética , Eritrócitos/metabolismo , Malária Vivax/genética , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Receptores de Superfície Celular/genética , Saimiri
8.
BMC Biol ; 19(1): 41, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33750380

RESUMO

BACKGROUND: The stable fly, Stomoxys calcitrans, is a major blood-feeding pest of livestock that has near worldwide distribution, causing an annual cost of over $2 billion for control and product loss in the USA alone. Control of these flies has been limited to increased sanitary management practices and insecticide application for suppressing larval stages. Few genetic and molecular resources are available to help in developing novel methods for controlling stable flies. RESULTS: This study examines stable fly biology by utilizing a combination of high-quality genome sequencing and RNA-Seq analyses targeting multiple developmental stages and tissues. In conjunction, 1600 genes were manually curated to characterize genetic features related to stable fly reproduction, vector host interactions, host-microbe dynamics, and putative targets for control. Most notable was characterization of genes associated with reproduction and identification of expanded gene families with functional associations to vision, chemosensation, immunity, and metabolic detoxification pathways. CONCLUSIONS: The combined sequencing, assembly, and curation of the male stable fly genome followed by RNA-Seq and downstream analyses provide insights necessary to understand the biology of this important pest. These resources and new data will provide the groundwork for expanding the tools available to control stable fly infestations. The close relationship of Stomoxys to other blood-feeding (horn flies and Glossina) and non-blood-feeding flies (house flies, medflies, Drosophila) will facilitate understanding of the evolutionary processes associated with development of blood feeding among the Cyclorrhapha.


Assuntos
Genoma de Inseto , Interações Hospedeiro-Parasita/genética , Controle de Insetos , Muscidae/genética , Animais , Reprodução/genética
9.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555254

RESUMO

Hard ticks feed for several days or weeks on their hosts and their saliva contains thousands of polypeptides belonging to dozens of families, as identified by salivary transcriptomes. Comparison of the coding sequences to protein databases helps to identify putative secreted proteins and their potential functions, directing and focusing future studies, usually done with recombinant proteins that are tested in different bioassays. However, many families of putative secreted peptides have a unique character, not providing significant matches to known sequences. The availability of the Alphafold2 program, which provides in silico predictions of the 3D polypeptide structure, coupled with the Dali program which uses the atomic coordinates of a structural model to search the Protein Data Bank (PDB) allows another layer of investigation to annotate and ascribe a functional role to proteins having so far being characterized as "unique". In this study, we analyzed the classification of tick salivary proteins under the light of the Alphafold2/Dali programs, detecting novel protein families and gaining new insights relating the structure and function of tick salivary proteins.


Assuntos
Ixodidae , Carrapatos , Animais , Carrapatos/genética , Carrapatos/metabolismo , Saliva/metabolismo , Ixodidae/metabolismo , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/metabolismo , Transcriptoma , Proteínas de Artrópodes/metabolismo
10.
Proc Natl Acad Sci U S A ; 115(4): 774-779, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29311293

RESUMO

Efforts to knock out Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1) from asexual erythrocytic stage have not been successful, indicating an indispensable role of the enzyme in asexual growth. We recently reported generation of a transgenic parasite with mutant CDPK1 [Bansal A, et al. (2016) MBio 7:e02011-16]. The mutant CDPK1 (T145M) had reduced activity of transphosphorylation. We reasoned that CDPK1 could be disrupted in the mutant parasites. Consistent with this assumption, CDPK1 was successfully disrupted in the mutant parasites using CRISPR/Cas9. We and others could not disrupt PfCDPK1 in the WT parasites. The CDPK1 KO parasites show a slow growth rate compared with the WT and the CDPK1 T145M parasites. Additionally, the CDPK1 KO parasites show a defect in both male and female gametogenesis and could not establish an infection in mosquitoes. Complementation of the KO parasite with full-length PfCDPK1 partially rescued the asexual growth defect and mosquito infection. Comparative global transcriptomics of WT and the CDPK1 KO schizonts using RNA-seq show significantly high transcript expression of gametocyte-specific genes in the CDPK1 KO parasites. This study conclusively demonstrates that CDPK1 is a good target for developing transmission-blocking drugs.


Assuntos
Culicidae/parasitologia , Gametogênese , Proteínas Quinases/fisiologia , Proteínas de Protozoários/fisiologia , Animais , Sistemas CRISPR-Cas , Edição de Genes , Regulação da Expressão Gênica , Plasmodium falciparum
11.
BMC Genomics ; 21(1): 547, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32767966

RESUMO

BACKGROUND: The Asian tiger mosquito, Aedes albopictus, is a highly dangerous invasive vector of numerous medically important arboviruses including dengue, chikungunya and Zika. In four decades it has spread from tropical Southeast Asia to many parts of the world in both tropical and temperate climes. The rapid invasion process of this mosquito is supported by its high ecological and genetic plasticity across different life history traits. Our aim was to investigate whether wild populations, both native and adventive, also display transcriptional genetic variability for functions that may impact their biology, behaviour and ability to transmit arboviruses, such as sensory perception. RESULTS: Antennal transcriptome data were derived from mosquitoes from a native population from Ban Rai, Thailand and from three adventive Mediterranean populations: Athens, Greece and Arco and Trento from Italy. Clear inter-population differential transcriptional activity was observed in different gene categories related to sound perception, olfaction and viral infection. The greatest differences were detected between the native Thai and the Mediterranean populations. The two Italian populations were the most similar. Nearly one million quality filtered SNP loci were identified. CONCLUSION: The ability to express this great inter-population transcriptional variability highlights, at the functional level, the remarkable genetic flexibility of this mosquito species. We can hypothesize that the differential expression of genes, including those involved in sensory perception, in different populations may enable Ae. albopictus to exploit different environments and hosts, thus contributing to its status as a global vector of arboviruses of public health importance. The large number of SNP loci present in these transcripts represents a useful addition to the arsenal of high-resolution molecular markers and a resource that can be used to detect selective pressure and adaptive changes that may have occurred during the colonization process.


Assuntos
Aedes , Arbovírus , Infecção por Zika virus , Zika virus , Aedes/genética , Animais , Itália , Mosquitos Vetores/genética , Tailândia
12.
PLoS Pathog ; 14(5): e1007006, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29723281

RESUMO

Salivary components from disease vectors help arthropods to acquire blood and have been shown to enhance pathogen transmission in different model systems. Here we show that two salivary enzymes from Lutzomyia longipalpis have a synergist effect that facilitates a more efficient blood meal intake and diffusion of other sialome components. We have previously shown that Lundep, a highly active endonuclease, enhances parasite infection and prevent blood clotting by inhibiting the intrinsic pathway of coagulation. To investigate the physiological role of a salivary hyaluronidase in blood feeding we cloned and expressed a recombinant hyaluronidase from Lu. longipalpis. Recombinant hyaluronidase (LuloHya) was expressed in mammalian cells and biochemically characterized in vitro. Our study showed that expression of neutrophil CXC chemokines and colony stimulating factors were upregulated in HMVEC cells after incubation with LuloHya and Lundep. These results were confirmed by the acute hemorrhage, edema and inflammation in a dermal necrosis (dermonecrotic) assay involving a massive infiltration of leukocytes, especially neutrophils, in mice co-injected with hemorrhagic factor and these two salivary proteins. Moreover, flow cytometry results showed that LuloHya and Lundep promote neutrophil recruitment to the bite site that may serve as a vehicle for establishment of Leishmania infection. A vaccination experiment demonstrated that LuloHya and Lundep confer protective immunity against cutaneous leishmaniasis using the Lu. longipalpis-Leishmania major combination as a model. Animals (C57BL/6) immunized with LuloHya or Lundep showed minimal skin damage while lesions in control animals remained ulcerated. This protective immunity was abrogated when B-cell-deficient mice were used indicating that antibodies against both proteins play a significant role for disease protection. Rabbit-raised anti-LuloHya antibodies completely abrogated hyaluronidase activity in vitro. Moreover, in vivo experiments demonstrated that blocking LuloHya with specific antibodies interferes with sand fly blood feeding. This work highlights the relevance of vector salivary components in blood feeding and parasite transmission and further suggests the inclusion of these salivary proteins as components for an anti-Leishmania vaccine.


Assuntos
Hialuronoglucosaminidase/imunologia , Leishmania major/imunologia , Leishmania major/patogenicidade , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/prevenção & controle , Psychodidae/imunologia , Animais , Simulação por Computador , Endonucleases/imunologia , Feminino , Interações Hospedeiro-Patógeno/imunologia , Humanos , Hialuronoglucosaminidase/química , Proteínas de Insetos/química , Proteínas de Insetos/imunologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Modelos Moleculares , Neutrófilos/imunologia , Polissacarídeo-Liases/imunologia , Coelhos , Saliva/enzimologia , Saliva/imunologia
13.
J Proteome Res ; 18(11): 3831-3839, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31549843

RESUMO

Plasmodium falciparum variant antigens named erythrocyte membrane protein 1 (PfEMP1) are important targets for developing a protective immunity to malaria caused by P. falciparum. One of the major challenges in P. falciparum proteomics studies is identifying PfEMP1s at the protein level due to antigenic variation. To identify these PfEMP1s using shotgun proteomics, we developed a pipeline that searches high-resolution mass spectrometry spectra against a custom protein sequence database. A local alignment algorithm, LAX, was developed as a part of the pipeline that matches peptide sequences to the most similar PfEMP1 and calculates a weight value based on peptide's uniqueness used for PfEMP1 protein inference. The pipeline was first validated in the analysis of a laboratory strain with a known PfEMP1, then it was implemented on the analysis of parasite isolates from malaria-infected pregnant women and finally on the analysis of parasite isolates from malaria-infected children where there was an increase of PfEMP1s identified in 27 out of 31 isolates using the expanded database.


Assuntos
Proteínas Mutantes/metabolismo , Plasmodium falciparum/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Criança , Cromatografia Líquida/métodos , Feminino , Humanos , Malária Falciparum/parasitologia , Proteínas Mutantes/genética , Plasmodium falciparum/isolamento & purificação , Plasmodium falciparum/fisiologia , Gravidez , Complicações Parasitárias na Gravidez/parasitologia , Proteoma/genética , Proteínas de Protozoários/genética , Homologia de Sequência de Aminoácidos , Espectrometria de Massas em Tandem/métodos
14.
BMC Genomics ; 20(1): 166, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30832587

RESUMO

BACKGROUND: Saliva of mosquitoes contains anti-platelet, anti-clotting, vasodilatory, anti-complement and anti-inflammatory substances that help the blood feeding process. The salivary polypeptides are at a fast pace of evolution possibly due to their relative lack of structural constraint and possibly also by positive selection on their genes leading to evasion of host immune pressure. RESULTS: In this study, we used deep mRNA sequence to uncover for the first time the sialomes of four Amazonian anophelines species (Anopheles braziliensis, A. marajorara, A. nuneztovari and A. triannulatus) and extend the knowledge of the A. darlingi sialome. Two libraries were generated from A. darlingi mosquitoes, sampled from two localities separated ~ 1100 km apart. A total of 60,016 sequences were submitted to GenBank, which will help discovery of novel pharmacologically active polypeptides and the design of specific immunological markers of mosquito exposure. Additionally, in these analyses we identified and characterized novel phasmaviruses and anpheviruses associated to the sialomes of A. triannulatus, A. marajorara and A. darlingi species. CONCLUSIONS: Besides their pharmacological properties, which may be exploited for the development of new drugs (e.g. anti-thrombotics), salivary proteins of blood feeding arthropods may be turned into tools to prevent and/or better control vector borne diseases; for example, through the development of vaccines or biomarkers to evaluate human exposure to vector bites. The sialotranscriptome study reported here provided novel data on four New World anopheline species and allowed to extend our knowledge on the salivary repertoire of A. darlingi. Additionally, we discovered novel viruses following analysis of the transcriptomes, a procedure that should become standard within future RNAseq studies.


Assuntos
Anopheles/genética , Peptídeos/genética , Saliva/química , Proteínas e Peptídeos Salivares/genética , Sequência de Aminoácidos/genética , Animais , Anopheles/química , Brasil , Humanos , Insetos Vetores/química , Insetos Vetores/genética , Mosquitos Vetores/genética , Ácido N-Acetilneuramínico/química , Peptídeos/química , RNA Mensageiro/genética , Proteínas e Peptídeos Salivares/química , Seleção Genética/genética
15.
Emerg Infect Dis ; 25(11): 2088-2092, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31625841

RESUMO

Through whole-genome sequencing analysis, we identified non-Leishmania parasites isolated from a man with a fatal visceral leishmaniasis-like illness in Brazil. The parasites infected mice and reproduced the patient's clinical manifestations. Molecular epidemiologic studies are needed to ascertain whether a new infectious disease is emerging that can be confused with leishmaniasis.


Assuntos
Infecções por Euglenozoa/epidemiologia , Infecções por Euglenozoa/parasitologia , Trypanosomatina/genética , Idoso , Animais , Brasil/epidemiologia , DNA Espaçador Ribossômico , Genes de Helmintos , Humanos , Leishmaniose Visceral/epidemiologia , Leishmaniose Visceral/parasitologia , Masculino , Camundongos , Filogenia , Trypanosomatina/classificação
16.
J Virol ; 92(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29743363

RESUMO

Recent advances in mass spectrometry methods and instrumentation now allow for more accurate identification of proteins in low abundance. This technology was applied to Sindbis virus, the prototypical alphavirus, to investigate the viral proteome. To determine if host proteins are specifically packaged into alphavirus virions, Sindbis virus (SINV) was grown in multiple host cells representing vertebrate and mosquito hosts, and total protein content of purified virions was determined. This analysis identified host factors not previously associated with alphavirus entry, replication, or egress. One host protein, sorting nexin 5 (SNX5), was shown to be critical for the replication of three different alphaviruses, Sindbis, Mayaro, and Chikungunya viruses. The most significant finding was that in addition to the host proteins, SINV nonstructural protein 2 (nsP2) was detected within virions grown in all host cells examined. The protein and RNA-interacting capabilities of nsP2 coupled with its presence in the virion support a role for nsP2 during packaging and/or entry of progeny virus. This function has not been identified for this protein. Taken together, this strategy identified at least one host factor integrally involved in alphavirus replication. Identification of other host proteins provides insight into alphavirus-host interactions during viral replication in both vertebrate and invertebrate hosts. This method of virus proteome analysis may also be useful for the identification of protein candidates for host-based therapeutics.IMPORTANCE Pathogenic alphaviruses, such as Chikungunya and Mayaro viruses, continue to plague public health in developing and developed countries alike. Alphaviruses belong to a group of viruses vectored in nature by hematophagous (blood-feeding) insects and are termed arboviruses (arthropod-borne viruses). This group of viruses contains many human pathogens, such as dengue fever, West Nile, and Yellow fever viruses. With few exceptions, there are no vaccines or prophylactics for these agents, leaving one-third of the world population at risk of infection. Identifying effective antivirals has been a long-term goal for combating these diseases not only because of the lack of vaccines but also because they are effective during an ongoing epidemic. Mass spectrometry-based analysis of the Sindbis virus proteome can be effective in identifying host genes involved in virus replication and novel functions for virus proteins. Identification of these factors is invaluable for the prophylaxis of this group of viruses.


Assuntos
Infecções por Alphavirus/metabolismo , Culicidae/metabolismo , Cisteína Endopeptidases/metabolismo , Proteoma/metabolismo , Sindbis virus/fisiologia , Nexinas de Classificação/metabolismo , Vírion , Infecções por Alphavirus/virologia , Sequência de Aminoácidos , Animais , Cricetinae , Culicidae/virologia , Células HEK293 , Humanos , Homologia de Sequência , Replicação Viral
17.
Nature ; 499(7457): 223-7, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23823717

RESUMO

The variant antigen Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), which is expressed on the surface of P. falciparum-infected red blood cells, is a critical virulence factor for malaria. Each parasite has 60 antigenically distinct var genes that each code for a different PfEMP1 protein. During infection the clonal parasite population expresses only one gene at a time before switching to the expression of a new variant antigen as an immune-evasion mechanism to avoid the host antibody response. The mechanism by which 59 of the 60 var genes are silenced remains largely unknown. Here we show that knocking out the P. falciparum variant-silencing SET gene (here termed PfSETvs), which encodes an orthologue of Drosophila melanogaster ASH1 and controls histone H3 lysine 36 trimethylation (H3K36me3) on var genes, results in the transcription of virtually all var genes in the single parasite nuclei and their expression as proteins on the surface of individual infected red blood cells. PfSETvs-dependent H3K36me3 is present along the entire gene body, including the transcription start site, to silence var genes. With low occupancy of PfSETvs at both the transcription start site of var genes and the intronic promoter, expression of var genes coincides with transcription of their corresponding antisense long noncoding RNA. These results uncover a previously unknown role of PfSETvs-dependent H3K36me3 in silencing var genes in P. falciparum that might provide a general mechanism by which orthologues of PfSETvs repress gene expression in other eukaryotes. PfSETvs knockout parasites expressing all PfEMP1 proteins may also be applied to the development of a malaria vaccine.


Assuntos
Inativação Gênica , Histonas/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/metabolismo , Fatores de Virulência/genética , Proteínas de Ligação a DNA , Proteínas de Drosophila , Eritrócitos/citologia , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Genes de Protozoários/genética , Histonas/química , Íntrons/genética , Lisina/metabolismo , Vacinas Antimaláricas/genética , Metilação , Plasmodium falciparum/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas de Protozoários/genética , RNA Longo não Codificante/genética , Fatores de Transcrição , Sítio de Iniciação de Transcrição , Virulência/genética
18.
J Biol Chem ; 292(37): 15329-15339, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28751377

RESUMO

Juvenile hormone (JH) is a key regulator of insect development and reproduction. In adult mosquitoes, it is essential for maturation of the ovary and normal male reproductive behavior, but how JH distribution and activity is regulated after secretion is unclear. Here, we report a new type of specific JH-binding protein, given the name mosquito juvenile hormone-binding protein (mJHBP), which circulates in the hemolymph of pupal and adult Aedes aegypti males and females. mJHBP is a member of the odorant-binding protein (OBP) family, and orthologs are present in the genomes of Aedes, Culex, and Anopheles mosquito species. Using isothermal titration calorimetry, we show that mJHBP specifically binds JH II and JH III but not eicosanoids or JH derivatives. mJHBP was crystallized in the presence of JH III and found to have a double OBP domain structure reminiscent of salivary "long" D7 proteins of mosquitoes. We observed that a single JH III molecule is contained in the N-terminal domain binding pocket that is closed in an apparent conformational change by a C-terminal domain-derived α-helix. The electron density for the ligand indicated a high occupancy of the natural 10R enantiomer of JH III. Of note, mJHBP is structurally unrelated to hemolymph JHBP from lepidopteran insects. A low level of expression of mJHBP in Ae. aegypti larvae suggests that it is primarily active during the adult stage where it could potentially influence the effects of JH on egg development, mating behavior, feeding, or other processes.


Assuntos
Aedes/fisiologia , Proteínas de Transporte/metabolismo , Hemolinfa/metabolismo , Proteínas de Insetos/metabolismo , Hormônios Juvenis/metabolismo , Modelos Moleculares , Receptores Odorantes/metabolismo , Sesquiterpenos/metabolismo , Aedes/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/genética , Cristalografia por Raios X , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/química , Proteínas de Insetos/genética , Hormônios Juvenis/química , Larva/crescimento & desenvolvimento , Larva/fisiologia , Ligantes , Masculino , Filogenia , Conformação Proteica , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , Receptores Odorantes/química , Receptores Odorantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Sesquiterpenos/química , Homologia Estrutural de Proteína
19.
J Immunol ; 197(2): 599-610, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27307559

RESUMO

The complement system present in circulating blood is an effective mechanism of host defense, responsible for the killing of pathogens and the production of potent anaphylatoxins. Inhibitors of the complement system have been described in the saliva of hematophagous arthropods that are involved in the protection of digestive tissues against complement system-mediated damage. In this study, we describe albicin, a novel inhibitor of the alternative pathway of complement from the salivary glands of the malaria vector, Anopheles albimanus The inhibitor was purified from salivary gland homogenates by reverse-phase HPLC and identified by mass spectrometry as a small (13.4-kDa) protein related to the gSG7 protein of Anopheles gambiae and Anopheles stephensi Recombinant albicin was produced in Escherichia coli and found to potently inhibit lysis of rabbit erythrocytes in assays of the alternative pathway while having no inhibitory effect on the classical or lectin pathways. Albicin also inhibited the deposition of complement components on agarose-coated plates, although it could not remove previously bound components. Antisera produced against recombinant albicin recognized both the native and recombinant inhibitors and also blocked their activities in in vitro assays. Using surface plasmon resonance and enzymatic assays, we found that albicin binds and stabilizes the C3-convertase complex (C3bBb) formed on a properdin surface and inhibits the convertase activity of a reconstituted C3bBb complex in solution. The data indicate that albicin specifically recognizes the activated form of the complex, allowing more efficient inhibition by an inhibitor whose quantity is limited.


Assuntos
Anopheles/imunologia , Via Alternativa do Complemento/imunologia , Proteínas de Insetos/imunologia , Saliva/imunologia , Proteínas e Peptídeos Salivares/imunologia , Animais , Western Blotting , Cromatografia Líquida de Alta Pressão , Ensaio de Imunoadsorção Enzimática , Feminino , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Espectrometria de Massas , Reação em Cadeia da Polimerase , Coelhos , Ressonância de Plasmônio de Superfície
20.
Proc Natl Acad Sci U S A ; 112(48): 14936-41, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627243

RESUMO

Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome (∼ 702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immune-deficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods.


Assuntos
Adaptação Fisiológica/genética , Doença de Chagas , Interações Hospedeiro-Parasita/genética , Insetos Vetores , Rhodnius , Trypanosoma cruzi/fisiologia , Animais , Sequência de Bases , Transferência Genética Horizontal , Humanos , Insetos Vetores/genética , Insetos Vetores/parasitologia , Dados de Sequência Molecular , Rhodnius/genética , Rhodnius/parasitologia , Wolbachia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA