Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Pathog ; 20(7): e1012236, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39074163

RESUMO

Most people living with HIV-1 experience rapid viral rebound once antiretroviral therapy is interrupted; however, a small fraction remain in viral remission for an extended duration. Understanding the factors that determine whether viral rebound is likely after treatment interruption can enable the development of optimal treatment regimens and therapeutic interventions to potentially achieve a functional cure for HIV-1. We built upon the theoretical framework proposed by Conway and Perelson to construct dynamic models of virus-immune interactions to study factors that influence viral rebound dynamics. We evaluated these models using viral load data from 24 individuals following antiretroviral therapy interruption. The best-performing model accurately captures the heterogeneity of viral dynamics and highlights the importance of the effector cell expansion rate. Our results show that post-treatment controllers and non-controllers can be distinguished based on the effector cell expansion rate in our models. Furthermore, these results demonstrate the potential of using dynamic models incorporating an effector cell response to understand early viral rebound dynamics post-antiretroviral therapy interruption.


Assuntos
Infecções por HIV , HIV-1 , Carga Viral , Humanos , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Infecções por HIV/imunologia , Carga Viral/efeitos dos fármacos , Fármacos Anti-HIV/uso terapêutico , Fármacos Anti-HIV/farmacologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD4-Positivos/imunologia , Antirretrovirais/uso terapêutico , Terapia Antirretroviral de Alta Atividade , Masculino
2.
PLoS Pathog ; 20(4): e1011680, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38635853

RESUMO

To mitigate the loss of lives during the COVID-19 pandemic, emergency use authorization was given to several anti-SARS-CoV-2 monoclonal antibody (mAb) therapies for the treatment of mild-to-moderate COVID-19 in patients with a high risk of progressing to severe disease. Monoclonal antibodies used to treat SARS-CoV-2 target the spike protein of the virus and block its ability to enter and infect target cells. Monoclonal antibody therapy can thus accelerate the decline in viral load and lower hospitalization rates among high-risk patients with variants susceptible to mAb therapy. However, viral resistance has been observed, in some cases leading to a transient viral rebound that can be as large as 3-4 orders of magnitude. As mAbs represent a proven treatment choice for SARS-CoV-2 and other viral infections, evaluation of treatment-emergent mAb resistance can help uncover underlying pathobiology of SARS-CoV-2 infection and may also help in the development of the next generation of mAb therapies. Although resistance can be expected, the large rebounds observed are much more difficult to explain. We hypothesize replenishment of target cells is necessary to generate the high transient viral rebound. Thus, we formulated two models with different mechanisms for target cell replenishment (homeostatic proliferation and return from an innate immune response antiviral state) and fit them to data from persons with SARS-CoV-2 treated with a mAb. We showed that both models can explain the emergence of resistant virus associated with high transient viral rebounds. We found that variations in the target cell supply rate and adaptive immunity parameters have a strong impact on the magnitude or observability of the viral rebound associated with the emergence of resistant virus. Both variations in target cell supply rate and adaptive immunity parameters may explain why only some individuals develop observable transient resistant viral rebound. Our study highlights the conditions that can lead to resistance and subsequent viral rebound in mAb treatments during acute infection.


Assuntos
Anticorpos Monoclonais , Tratamento Farmacológico da COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2/imunologia , SARS-CoV-2/efeitos dos fármacos , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , COVID-19/imunologia , COVID-19/virologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Farmacorresistência Viral/imunologia , Carga Viral/efeitos dos fármacos , Antivirais/uso terapêutico , Antivirais/farmacologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico
3.
PLoS Comput Biol ; 20(6): e1012129, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38848426

RESUMO

Understanding the dynamics of acute HIV infection can offer valuable insights into the early stages of viral behavior, potentially helping uncover various aspects of HIV pathogenesis. The standard viral dynamics model explains HIV viral dynamics during acute infection reasonably well. However, the model makes simplifying assumptions, neglecting some aspects of HIV infection. For instance, in the standard model, target cells are infected by a single HIV virion. Yet, cellular multiplicity of infection (MOI) may have considerable effects in pathogenesis and viral evolution. Further, when using the standard model, we take constant infected cell death rates, simplifying the dynamic immune responses. Here, we use four models-1) the standard viral dynamics model, 2) an alternate model incorporating cellular MOI, 3) a model assuming density-dependent death rate of infected cells and 4) a model combining (2) and (3)-to investigate acute infection dynamics in 43 people living with HIV very early after HIV exposure. We find that all models qualitatively describe the data, but none of the tested models is by itself the best to capture different kinds of heterogeneity. Instead, different models describe differing features of the dynamics more accurately. For example, while the standard viral dynamics model may be the most parsimonious across study participants by the corrected Akaike Information Criterion (AICc), we find that viral peaks are better explained by a model allowing for cellular MOI, using a linear regression analysis as analyzed by R2. These results suggest that heterogeneity in within-host viral dynamics cannot be captured by a single model. Depending on the specific aspect of interest, a corresponding model should be employed.


Assuntos
Morte Celular , Infecções por HIV , Modelos Biológicos , Infecções por HIV/virologia , Infecções por HIV/fisiopatologia , Humanos , Morte Celular/fisiologia , HIV-1/fisiologia , HIV-1/patogenicidade , Biologia Computacional , Carga Viral , Masculino , Adulto , Doença Aguda , Feminino
4.
PLoS Comput Biol ; 20(4): e1011437, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38626190

RESUMO

Mathematical models of viral infection have been developed, fitted to data, and provide insight into disease pathogenesis for multiple agents that cause chronic infection, including HIV, hepatitis C, and B virus. However, for agents that cause acute infections or during the acute stage of agents that cause chronic infections, viral load data are often collected after symptoms develop, usually around or after the peak viral load. Consequently, we frequently lack data in the initial phase of viral growth, i.e., when pre-symptomatic transmission events occur. Missing data may make estimating the time of infection, the infectious period, and parameters in viral dynamic models, such as the cell infection rate, difficult. However, having extra information, such as the average time to peak viral load, may improve the robustness of the estimation. Here, we evaluated the robustness of estimates of key model parameters when viral load data prior to the viral load peak is missing, when we know the values of some parameters and/or the time from infection to peak viral load. Although estimates of the time of infection are sensitive to the quality and amount of available data, particularly pre-peak, other parameters important in understanding disease pathogenesis, such as the loss rate of infected cells, are less sensitive. Viral infectivity and the viral production rate are key parameters affecting the robustness of data fits. Fixing their values to literature values can help estimate the remaining model parameters when pre-peak data is missing or limited. We find a lack of data in the pre-peak growth phase underestimates the time to peak viral load by several days, leading to a shorter predicted growth phase. On the other hand, knowing the time of infection (e.g., from epidemiological data) and fixing it results in good estimates of dynamical parameters even in the absence of early data. While we provide ways to approximate model parameters in the absence of early viral load data, our results also suggest that these data, when available, are needed to estimate model parameters more precisely.


Assuntos
Modelos Biológicos , Carga Viral , Humanos , Viroses/virologia , Biologia Computacional/métodos , Simulação por Computador
5.
bioRxiv ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39071423

RESUMO

Chronic hepatitis B virus (HBV) infection is strongly associated with increased risk of liver cancer and cirrhosis. While existing treatments effectively inhibit the HBV life cycle, viral rebound occurs rapidly following treatment interruption. Consequently, functional cure rates of chronic HBV infection remain low and there is increased interest in a novel treatment modality, capsid assembly modulators (CAMs). Here, we develop a multiscale mathematical model of CAM treatment in chronic HBV infection. By fitting the model to participant data from a phase I trial of the first-generation CAM vebicorvir, we estimate the drug's dose-dependent effectiveness and identify the physiological mechanisms that drive the observed biphasic decline in HBV DNA and RNA, and mechanistic differences between HBeAg-positive and negative infection. Finally, we demonstrate analytically and numerically that HBV RNA is more sensitive than HBV DNA to increases in CAM effectiveness.

6.
Viruses ; 16(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38932264

RESUMO

Understanding the underlying mechanisms of HIV pathogenesis is critical for designing successful HIV vaccines and cure strategies. However, achieving this goal is complicated by the virus's direct interactions with immune cells, the induction of persistent reservoirs in the immune system cells, and multiple strategies developed by the virus for immune evasion. Meanwhile, HIV and SIV infections induce a pandysfunction of the immune cell populations, making it difficult to untangle the various concurrent mechanisms of HIV pathogenesis. Over the years, one of the most successful approaches for dissecting the immune correlates of protection in HIV/SIV infection has been the in vivo depletion of various immune cell populations and assessment of the impact of these depletions on the outcome of infection in non-human primate models. Here, we present a detailed analysis of the strategies and results of manipulating SIV pathogenesis through in vivo depletions of key immune cells populations. Although each of these methods has its limitations, they have all contributed to our understanding of key pathogenic pathways in HIV/SIV infection.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/patogenicidade , Animais , Infecções por HIV/imunologia , Infecções por HIV/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Humanos , HIV/imunologia , HIV/patogenicidade , Modelos Animais de Doenças , Haplorrinos , Depleção Linfocítica
7.
J R Soc Interface ; 21(210): 20230400, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38264928

RESUMO

We consider stochastic models of individual infected cells. The reproduction number, R, is understood as a random variable representing the number of new cells infected by one initial infected cell in an otherwise susceptible (target cell) population. Variability in R results partly from heterogeneity in the viral burst size (the number of viral progeny generated from an infected cell during its lifetime), which depends on the distribution of cellular lifetimes and on the mechanism of virion release. We analyse viral dynamics models with an eclipse phase: the period of time after a cell is infected but before it is capable of releasing virions. The duration of the eclipse, or the subsequent infectious, phase is non-exponential, but composed of stages. We derive the probability distribution of the reproduction number for these viral dynamics models, and show it is a negative binomial distribution in the case of constant viral release from infectious cells, and under the assumption of an excess of target cells. In a deterministic model, the ultimate in-host establishment or extinction of the viral infection depends entirely on whether the mean reproduction number is greater than, or less than, one, respectively. Here, the probability of extinction is determined by the probability distribution of R, not simply its mean value. In particular, we show that in some cases the probability of infection is not an increasing function of the mean reproduction number.


Assuntos
Reprodução , Vírion , Probabilidade
8.
bioRxiv ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38746144

RESUMO

Most people living with HIV-1 experience rapid viral rebound once antiretroviral therapy is interrupted; however, a small fraction remain in viral remission for an extended duration. Understanding the factors that determine whether viral rebound is likely after treatment interruption can enable the development of optimal treatment regimens and therapeutic interventions to potentially achieve a functional cure for HIV-1. We built upon the theoretical framework proposed by Conway and Perelson to construct dynamic models of virus-immune interactions to study factors that influence viral rebound dynamics. We evaluated these models using viral load data from 24 individuals following antiretroviral therapy interruption. The best-performing model accurately captures the heterogeneity of viral dynamics and highlights the importance of the effector cell expansion rate. Our results show that post-treatment controllers and non-controllers can be distinguished based on the effector cell expansion rate in our models. Furthermore, these results demonstrate the potential of using dynamic models incorporating an effector cell response to understand early viral rebound dynamics post-antiretroviral therapy interruption.

9.
Sci Rep ; 14(1): 1793, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245528

RESUMO

We present an ensemble transfer learning method to predict suicide from Veterans Affairs (VA) electronic medical records (EMR). A diverse set of base models was trained to predict a binary outcome constructed from reported suicide, suicide attempt, and overdose diagnoses with varying choices of study design and prediction methodology. Each model used twenty cross-sectional and 190 longitudinal variables observed in eight time intervals covering 7.5 years prior to the time of prediction. Ensembles of seven base models were created and fine-tuned with ten variables expected to change with study design and outcome definition in order to predict suicide and combined outcome in a prospective cohort. The ensemble models achieved c-statistics of 0.73 on 2-year suicide risk and 0.83 on the combined outcome when predicting on a prospective cohort of [Formula: see text] 4.2 M veterans. The ensembles rely on nonlinear base models trained using a matched retrospective nested case-control (Rcc) study cohort and show good calibration across a diversity of subgroups, including risk strata, age, sex, race, and level of healthcare utilization. In addition, a linear Rcc base model provided a rich set of biological predictors, including indicators of suicide, substance use disorder, mental health diagnoses and treatments, hypoxia and vascular damage, and demographics.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Veteranos , Humanos , Veteranos/psicologia , Estudos Retrospectivos , Estudos Transversais , Estudos Prospectivos , Tentativa de Suicídio , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA