Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(14): 5445-5464, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33818086

RESUMO

The direct synthesis of hydrogen peroxide (H2 + O2 → H2O2) may enable low-cost H2O2 production and reduce environmental impacts of chemical oxidations. Here, we synthesize a series of Pd1Aux nanoparticles (where 0 ≤ x ≤ 220, ∼10 nm) and show that, in pure water solvent, H2O2 selectivity increases with the Au to Pd ratio and approaches 100% for Pd1Au220. Analysis of in situ XAS and ex situ FTIR of adsorbed 12CO and 13CO show that materials with Au to Pd ratios of ∼40 and greater expose only monomeric Pd species during catalysis and that the average distance between Pd monomers increases with further dilution. Ab initio quantum chemical simulations and experimental rate measurements indicate that both H2O2 and H2O form by reduction of a common OOH* intermediate by proton-electron transfer steps mediated by water molecules over Pd and Pd1Aux nanoparticles. Measured apparent activation enthalpies and calculated activation barriers for H2O2 and H2O formation both increase as Pd is diluted by Au, even beyond the complete loss of Pd-Pd coordination. These effects impact H2O formation more significantly, indicating preferential destabilization of transition states that cleave O-O bonds reflected by increasing H2O2 selectivities (19% on Pd; 95% on PdAu220) but with only a 3-fold reduction in H2O2 formation rates. The data imply that the transition states for H2O2 and H2O formation pathways differ in their coordination to the metal surface, and such differences in site requirements require that we consider second coordination shells during the design of bimetallic catalysts.

2.
ACS Catal ; 14(5): 3248-3265, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38449529

RESUMO

Au nanoparticles catalyze the activation and conversion of small molecules with rates and kinetic barriers that depend on the dimensions of the nanoparticle, composition of the support, and presence of catalytically culpable water molecules that solvate these interfaces. Here, molecular interpretations of steady-state rate measurements, kinetic isotope effects, and structural characterizations reveal how the interface of Au nanoparticles, liquid water, and metal oxide supports mediate the kinetically relevant activation of H2 and sequential reduction of O2-derived intermediates during the formation of H2O2 and H2O. Rates of H2 consumption are 10-100 fold greater on Au nanoparticles supported on metal oxides (e.g., titania) compared to more inert and hydrophobic materials (carbon, boron nitride). Similarly, Au nanoparticles on reducible and Lewis acidic supports (e.g., lanthana) bind dioxygen intermediates more strongly and present lower barriers (<22 kJ mol-1) for O-O bond dissociation than inert interfaces formed with silica (>70 kJ mol-1). Selectivities for H2O2 formation increase significantly as the diameters of the Au nanoparticles increase because differences in nanoparticle size change the relative fractions of exposed sites that exist at Au-support interfaces. In contrast, site-normalized rates and barriers for H2 activation depend weakly on the size of Au nanoparticles and the associated differences in active site motifs. These findings suggest that H2O aids the activation of H2 at sites present across all surface Au atoms when nanoparticles are solvated by water. However, molecular O2 preferentially binds and dissociates at Au-support interfaces, leading to greater structure sensitivity for barriers of O-O dissociation across different support identities and sizes of Au nanoparticles. These insights differ from prior knowledge from studies of gas-phase reactions of H2 and O2 upon Au nanoparticle catalysts within dilute vapor pressures of water (10-4 to 0.1 kPa H2O), in which catalysis occurs at the perimeter of the Au-support interface. In contrast, contacting Au catalysts with liquid water (55.5 M H2O) expands catalysis to all surface Au atoms and enables appreciable H2O2 formation.

3.
Biomaterials ; 287: 121610, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35696784

RESUMO

Biofilm is a major cause of infections and infrastructure deterioration, largely due to molecular diffusion restrictions that hamper the antimicrobial activity of traditional antibiotics and disinfectants. Here, we present a self-locomotive, antimicrobial microrobot (SLAM) swarm that can penetrate, fracture, and detach biofilm and, in turn, nullify bacterial resistance to antibiotics. The SLAM is assembled by loading a controlled mass of manganese oxide nanosheets on diatoms with the polydopamine binder. In hydrogen peroxide solution, SLAMs produce oxygen bubbles that generate thrust to penetrate the rigid and dense Pseudomonas aeruginosa biofilm and self-assemble into a swarm that repeatedly surrounds, expands, and bursts oxygen bubbles. The resulting cavities continue to deform and fracture extracellular polymeric substances from microgrooved silicone substrates and wounded skin explants while decreasing the number of viable bacterial cells. Additionally, SLAM allows irrigating water or antibiotics to access the residual biofilm better, thus enhancing the synergistic efficacy in killing up to 99.9% of bacterial cells.


Assuntos
Anti-Infecciosos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Peróxido de Hidrogênio , Biofilmes , Pseudomonas aeruginosa , Oxigênio
4.
Science ; 371(6529): 626-632, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33542136

RESUMO

Solvent molecules influence the reactions of molecular hydrogen and oxygen on palladium nanoparticles. Organic solvents activate to form reactive surface intermediates that mediate oxygen reduction through pathways distinct from reactions in pure water. Kinetic measurements and ab initio quantum chemical calculations indicate that methanol and water cocatalyze oxygen reduction by facilitating proton-electron transfer reactions. Methanol generates hydroxymethyl intermediates on palladium surfaces that efficiently transfer protons and electrons to oxygen to form hydrogen peroxide and formaldehyde. Formaldehyde subsequently oxidizes hydrogen to regenerate hydroxymethyl. Water, on the other hand, heterolytically oxidizes hydrogen to produce hydronium ions and electrons that reduce oxygen. These findings suggest that reactions of solvent molecules at solid-liquid interfaces can generate redox mediators in situ and provide opportunities to substantially increase rates and selectivities for catalytic reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA