Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Cell ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39383864

RESUMO

Tn7-like transposons are characterized by their ability to insert specifically into host chromosomes. Recognition of the attachment (att) site by TnsD recruits the TnsABC proteins to form the transpososome and facilitate transposition. Although this pathway is well established, atomic-level structural insights of this process remain largely elusive. Here, we present the cryo-electron microscopy (cryo-EM) structures of the TnsC-TnsD-att DNA complex and the TnsABCD transpososome from the Tn7-like transposon in Peltigera membranacea cyanobiont 210A, a type I-B CRISPR-associated transposon. Our structures reveal a striking bending of the att DNA, featured by the intercalation of an arginine side chain of TnsD into a CC/GG dinucleotide step. The TnsABCD transpososome structure reveals TnsA-TnsB interactions and demonstrates that TnsC not only recruits TnsAB but also directly participates in the transpososome assembly. These findings provide mechanistic insights into targeted DNA insertion by Tn7-like transposons, with implications for improving the precision and efficiency of their genome-editing applications.

2.
Cell ; 187(5): 1206-1222.e16, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38428395

RESUMO

Plasmids are extrachromosomal genetic elements that often encode fitness-enhancing features. However, many bacteria carry "cryptic" plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes and is 14 times as numerous as crAssphage, currently established as the most abundant extrachromosomal genetic element in the human gut. The majority of mutations in pBI143 accumulate in specific positions across thousands of metagenomes, indicating strong purifying selection. pBI143 is monoclonal in most individuals, likely due to the priority effect of the version first acquired, often from one's mother. pBI143 can transfer between Bacteroidales, and although it does not appear to impact bacterial host fitness in vivo, it can transiently acquire additional genetic content. We identified important practical applications of pBI143, including its use in identifying human fecal contamination and its potential as an alternative approach to track human colonic inflammatory states.


Assuntos
Bactérias , Trato Gastrointestinal , Metagenoma , Plasmídeos , Humanos , Bactérias/genética , Bacteroidetes/genética , Fezes/microbiologia , Plasmídeos/genética
3.
Nature ; 629(8011): 410-416, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632404

RESUMO

Bacteria have adapted to phage predation by evolving a vast assortment of defence systems1. Although anti-phage immunity genes can be identified using bioinformatic tools, the discovery of novel systems is restricted to the available prokaryotic sequence data2. Here, to overcome this limitation, we infected Escherichia coli carrying a soil metagenomic DNA library3 with the lytic coliphage T4 to isolate clones carrying protective genes. Following this approach, we identified Brig1, a DNA glycosylase that excises α-glucosyl-hydroxymethylcytosine nucleobases from the bacteriophage T4 genome to generate abasic sites and inhibit viral replication. Brig1 homologues that provide immunity against T-even phages are present in multiple phage defence loci across distinct clades of bacteria. Our study highlights the benefits of screening unsequenced DNA and reveals prokaryotic DNA glycosylases as important players in the bacteria-phage arms race.


Assuntos
Bactérias , Bacteriófago T4 , DNA Glicosilases , Bactérias/classificação , Bactérias/enzimologia , Bactérias/genética , Bactérias/imunologia , Bactérias/virologia , Bacteriófago T4/crescimento & desenvolvimento , Bacteriófago T4/imunologia , Bacteriófago T4/metabolismo , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Escherichia coli/genética , Escherichia coli/virologia , Biblioteca Gênica , Metagenômica/métodos , Microbiologia do Solo , Replicação Viral
4.
Nucleic Acids Res ; 51(16): 8891-8907, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37548413

RESUMO

In eukaryotic messenger RNAs, the 5' cap structure binds to the translation initiation factor 4E to facilitate early stages of translation. Although many plant viruses lack the 5' cap structure, some contain cap-independent translation elements (CITEs) in their 3' untranslated region. The PTE (Panicum mosaic virus translation element) class of CITEs contains a G-rich asymmetric bulge and a C-rich helical junction that were proposed to interact via formation of a pseudoknot. SHAPE analysis of PTE homologs reveals a highly reactive guanosine residue within the G-rich region proposed to mediate eukaryotic initiation factor 4E (eIF4E) recognition. Here we have obtained the crystal structure of the PTE from Pea enation mosaic virus 2 (PEMV2) RNA in complex with our structural chaperone, Fab BL3-6. The structure reveals that the G-rich and C-rich regions interact through a complex network of interactions distinct from those expected for a pseudoknot. The motif, which contains a short parallel duplex, provides a structural mechanism for how the guanosine is extruded from the core stack to enable eIF4E recognition. Homologous PTE elements harbor a G-rich bulge and a three-way junction and exhibit covariation at crucial positions, suggesting that the PEMV2 tertiary architecture is conserved among these homologs.


Assuntos
Vírus de Plantas , Sequências Reguladoras de Ácido Ribonucleico , Tombusviridae , Fator de Iniciação 4E em Eucariotos/metabolismo , Guanosina/metabolismo , Vírus de Plantas/química , Biossíntese de Proteínas , Capuzes de RNA/genética , RNA Mensageiro/metabolismo , Tombusviridae/química
5.
Nucleic Acids Res ; 51(3): 1001-1018, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36100255

RESUMO

Site-specific DNA recombinases play a variety of biological roles, often related to the dissemination of antibiotic resistance, and are also useful synthetic biology tools. The simplest site-specific recombination systems will recombine any two cognate sites regardless of context. Other systems have evolved elaborate mechanisms, often sensing DNA topology, to ensure that only one of multiple possible recombination products is produced. The closely related resolvases from the Tn3 and γδ transposons have historically served as paradigms for the regulation of recombinase activity by DNA topology. However, despite many proposals, models of the multi-subunit protein-DNA complex (termed the synaptosome) that enforces this regulation have been unsatisfying due to a lack of experimental constraints and incomplete concordance with experimental data. Here, we present new structural and biochemical data that lead to a new, detailed model of the Tn3 synaptosome, and discuss how it harnesses DNA topology to regulate the enzymatic activity of the recombinase.


Site-specific DNA recombinases alter the connectivity of DNA by recognizing specific DNA sequences, then cutting the DNA strands and pasting them together in a new configuration. Such enzymes play a variety of biological roles, often related to the dissemination of antibiotic resistance, and are also useful biotechnology tools. The simplest site-specific recombination systems will recombine any two cognate sites regardless of context. However, others have evolved elaborate mechanisms to ensure that only one of multiple possible recombination products is produced. Tn3 resolvase has long been known to be regulated by DNA topology­that is, it will cut and reconnect two target sequences only if they lie on the same DNA molecule, and if they are in the proper relative orientation. This study presents new structural and biochemical data that lead to a new, detailed model of the large protein­DNA complex formed by Tn3 resolvase and its cognate sites. This 3D model illustrates how DNA topology can be harnessed to regulate the activity of a recombinase and provides a basis for engineering Tn3 resolvase and related recombination systems as genome editing tools.


Assuntos
DNA , Complexos Multiproteicos , Transposon Resolvases , Elementos de DNA Transponíveis , Recombinases/genética , Transposases/genética , Transposon Resolvases/genética , Transposon Resolvases/metabolismo , Complexos Multiproteicos/química
7.
Mol Microbiol ; 114(6): 952-965, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33405333

RESUMO

The site-specific recombinase Tn3 resolvase initiates DNA strand exchange when two res recombination sites and six resolvase dimers interact to form a synapse. The detailed architecture of this intricate recombination machine remains unclear. We have clarified which of the potential dimer-dimer interactions are required for synapsis and recombination, using a novel complementation strategy that exploits a previously uncharacterized resolvase from Bartonella bacilliformis ("Bart"). Tn3 and Bart resolvases recognize different DNA motifs, via diverged C-terminal domains (CTDs). They also differ substantially at N-terminal domain (NTD) surfaces involved in dimerization and synapse assembly. We designed NTD-CTD hybrid proteins, and hybrid res sites containing both Tn3 and Bart dimer binding sites. Using these components in in vivo assays, we demonstrate that productive synapsis requires a specific "R" interface involving resolvase NTDs at all three dimer-binding sites in res. Synapses containing mixtures of wild-type Tn3 and Bart resolvase NTD dimers are recombination-defective, but activity can be restored by replacing patches of Tn3 resolvase R interface residues with Bart residues, or vice versa. We conclude that the Tn3/Bart family synapse is assembled exclusively by R interactions between resolvase dimers, except for the one special dimer-dimer interaction required for catalysis.


Assuntos
Proteínas de Bactérias/metabolismo , Bartonella bacilliformis/metabolismo , Transposon Resolvases/metabolismo , Proteínas de Bactérias/genética , Bartonella bacilliformis/genética , Sítios de Ligação , DNA Nucleotidiltransferases/metabolismo , Elementos de DNA Transponíveis , Proteínas de Ligação a DNA/metabolismo , Dimerização , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Transposon Resolvases/genética
8.
Nat Chem Biol ; 15(12): 1232-1240, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31740833

RESUMO

S-Palmitoylation is a reversible lipid post-translational modification that has been observed on mitochondrial proteins, but both the regulation and functional consequences of mitochondrial S-palmitoylation are poorly understood. Here, we show that perturbing the 'erasers' of S-palmitoylation, acyl protein thioesterases (APTs), with either pan-active inhibitors or a mitochondrial-targeted APT inhibitor, diminishes the antioxidant buffering capacity of mitochondria. Surprisingly, this effect was not mediated by the only known mitochondrial APT, but rather by a resident mitochondrial protein with no known endogenous function, ABHD10. We show that ABHD10 is a member of the APT family of regulatory proteins and identify peroxiredoxin-5 (PRDX5), a key antioxidant protein, as a target of ABHD10 S-depalmitoylase activity. We then find that ABHD10 regulates the S-palmitoylation status of the nucleophilic active site residue of PRDX5, providing a direct mechanistic connection between ABHD10-mediated S-depalmitoylation of PRDX5 and its antioxidant capacity.


Assuntos
Esterases/fisiologia , Homeostase , Peroxirredoxinas/metabolismo , Células HEK293 , Humanos , Mitocôndrias/metabolismo , Oxirredução
9.
Nucleic Acids Res ; 46(10): 5286-5296, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29315406

RESUMO

Members of the serine family of site-specific recombinases exchange DNA strands via 180° rotation about a central protein-protein interface. Modeling of this process has been hampered by the lack of structures in more than one rotational state for any individual serine recombinase. Here we report crystal structures of the catalytic domains of four constitutively active mutants of the serine recombinase Sin, providing snapshots of rotational states not previously visualized for Sin, including two seen in the same crystal. Normal mode analysis predicted that each tetramer's lowest frequency mode (i.e. most accessible large-scale motion) mimics rotation: two protomers rotate as a pair with respect to the other two. Our analyses also suggest that rotation is not a rigid body movement around a single symmetry axis but instead uses multiple pivot points and entails internal motions within each subunit.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , DNA Nucleotidiltransferases/química , DNA Nucleotidiltransferases/metabolismo , Proteínas de Bactérias/genética , Domínio Catalítico , Cristalografia por Raios X , DNA Nucleotidiltransferases/genética , Modelos Moleculares , Mutação
10.
Nucleic Acids Res ; 46(4): 1741-1755, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29267885

RESUMO

The dynamics and mechanism of how site-specific DNA-bending proteins initially interrogate potential binding sites prior to recognition have remained elusive for most systems. Here we present these dynamics for Integration Host factor (IHF), a nucleoid-associated architectural protein, using a µs-resolved T-jump approach. Our studies show two distinct DNA-bending steps during site recognition by IHF. While the faster (∼100 µs) step is unaffected by changes in DNA or protein sequence that alter affinity by >100-fold, the slower (1-10 ms) step is accelerated ∼5-fold when mismatches are introduced at DNA sites that are sharply kinked in the specific complex. The amplitudes of the fast phase increase when the specific complex is destabilized and decrease with increasing [salt], which increases specificity. Taken together, these results indicate that the fast phase is non-specific DNA bending while the slow phase, which responds only to changes in DNA flexibility at the kink sites, is specific DNA kinking during site recognition. Notably, the timescales for the fast phase overlap with one-dimensional diffusion times measured for several proteins on DNA, suggesting that these dynamics reflect partial DNA bending during interrogation of potential binding sites by IHF as it scans DNA.


Assuntos
DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Fatores Hospedeiros de Integração/metabolismo , Pareamento Incorreto de Bases , Pareamento de Bases , Sítios de Ligação , DNA/química , Proteínas de Escherichia coli/química , Transferência Ressonante de Energia de Fluorescência , Fatores Hospedeiros de Integração/química , Cinética , Mutação , Ligação Proteica
11.
Nucleic Acids Res ; 46(9): 4649-4661, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29294068

RESUMO

The phage Mu DNA transposition system provides a versatile species non-specific tool for molecular biology, genetic engineering and genome modification applications. Mu transposition is catalyzed by MuA transposase, with DNA cleavage and integration reactions ultimately attaching the transposon DNA to target DNA. To improve the activity of the Mu DNA transposition machinery, we mutagenized MuA protein and screened for hyperactivity-causing substitutions using an in vivo assay. The individual activity-enhancing substitutions were mapped onto the MuA-DNA complex structure, containing a tetramer of MuA transposase, two Mu end segments and a target DNA. This analysis, combined with the varying effect of the mutations in different assays, implied that the mutations exert their effects in several ways, including optimizing protein-protein and protein-DNA contacts. Based on these insights, we engineered highly hyperactive versions of MuA, by combining several synergistically acting substitutions located in different subdomains of the protein. Purified hyperactive MuA variants are now ready for use as second-generation tools in a variety of Mu-based DNA transposition applications. These variants will also widen the scope of Mu-based gene transfer technologies toward medical applications such as human gene therapy. Moreover, the work provides a platform for further design of custom transposases.


Assuntos
Elementos de DNA Transponíveis , Transposases/genética , Transposases/metabolismo , Substituição de Aminoácidos , Animais , Células Cultivadas , Engenharia Genética , Genoma , Camundongos , Modelos Moleculares , Mutação , Transposases/química , Transposases/isolamento & purificação
12.
Biochemistry ; 58(15): 1963-1974, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30950607

RESUMO

A( syn)-T and G( syn)-C+ Hoogsteen base pairs in protein-bound DNA duplexes can be difficult to resolve by X-ray crystallography due to ambiguous electron density and by nuclear magnetic resonance (NMR) spectroscopy due to poor chemical shift dispersion and size limitations with solution-state NMR spectroscopy. Here we describe an NMR strategy for characterizing Hoogsteen base pairs in protein-DNA complexes, which relies on site-specifically incorporating 13C- and 15N-labeled nucleotides into DNA duplexes for unambiguous resonance assignment and to improve spectral resolution. The approach was used to resolve the conformation of an A-T base pair in a crystal structure of an ∼43 kDa complex between a 34 bp duplex DNA and the integration host factor (IHF) protein. In the crystal structure (Protein Data Bank entry 1IHF ), this base pair adopts an unusual Hoogsteen conformation with a distorted sugar backbone that is accommodated by a nearby nick used to aid in crystallization. The NMR chemical shifts and interproton nuclear Overhauser effects indicate that this base pair predominantly adopts a Watson-Crick conformation in the intact DNA-IHF complex under solution conditions. Consistent with these NMR findings, substitution of 7-deazaadenine at this base pair resulted in only a small (∼2-fold) decrease in the IHF-DNA binding affinity. The NMR strategy provides a new approach for resolving crystallographic ambiguity and more generally for studying the structure and dynamics of protein-DNA complexes in solution.


Assuntos
Pareamento de Bases , Proteínas de Ligação a DNA/química , DNA/química , Substâncias Macromoleculares/química , Espectroscopia de Ressonância Magnética/métodos , Conformação de Ácido Nucleico , Sequência de Bases , Isótopos de Carbono/metabolismo , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Substâncias Macromoleculares/metabolismo , Modelos Moleculares , Estrutura Molecular , Isótopos de Nitrogênio/metabolismo , Nucleotídeos/química , Nucleotídeos/genética , Nucleotídeos/metabolismo , Domínios Proteicos
14.
Nature ; 491(7424): 413-7, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23135398

RESUMO

Studies of bacteriophage Mu transposition paved the way for understanding retroviral integration and V(D)J recombination as well as many other DNA transposition reactions. Here we report the structure of the Mu transpososome--Mu transposase (MuA) in complex with bacteriophage DNA ends and target DNA--determined from data that extend anisotropically to 5.2 Å, 5.2 Å and 3.7 Å resolution, in conjunction with previously determined structures of individual domains. The highly intertwined structure illustrates why chemical activity depends on formation of the synaptic complex, and reveals that individual domains have different roles when bound to different sites. The structure also provides explanations for the increased stability of the final product complex and for its preferential recognition by the ATP-dependent unfoldase ClpX. Although MuA and many other recombinases share a structurally conserved 'DDE' catalytic domain, comparisons among the limited set of available complex structures indicate that some conserved features, such as catalysis in trans and target DNA bending, arose through convergent evolution because they are important for function.


Assuntos
Bacteriófago mu/enzimologia , Evolução Molecular , Recombinases/química , Recombinases/metabolismo , Transposases/química , Bacteriófago mu/classificação , DNA Viral/química , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Transposases/metabolismo
15.
Nat Chem Biol ; 11(11): 840-6, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26414446

RESUMO

The Varkud satellite (VS) ribozyme mediates rolling-circle replication of a plasmid found in the Neurospora mitochondrion. We report crystal structures of this ribozyme from Neurospora intermedia at 3.1 Å resolution, which revealed an intertwined dimer formed by an exchange of substrate helices. In each protomer, an arrangement of three-way helical junctions organizes seven helices into a global fold that creates a docking site for the substrate helix of the other protomer, resulting in the formation of two active sites in trans. This mode of RNA-RNA association resembles the process of domain swapping in proteins and has implications for RNA regulation and evolution. Within each active site, adenine and guanine nucleobases abut the scissile phosphate, poised to serve direct roles in catalysis. Similarities to the active sites of the hairpin and hammerhead ribozymes highlight the functional importance of active-site features, underscore the ability of RNA to access functional architectures from distant regions of sequence space, and suggest convergent evolution.


Assuntos
Endorribonucleases/química , Proteínas Fúngicas/química , Neurospora/química , RNA Catalítico/química , RNA/química , Adenina/química , Adenina/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Endorribonucleases/genética , Endorribonucleases/metabolismo , Evolução Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Guanina/química , Guanina/metabolismo , Mitocôndrias/química , Mitocôndrias/enzimologia , Simulação de Acoplamento Molecular , Mutação , Neurospora/enzimologia , Conformação de Ácido Nucleico , Fosfatos/química , Fosfatos/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Multimerização Proteica , Estrutura Secundária de Proteína , RNA/genética , RNA/metabolismo , RNA Catalítico/genética , RNA Catalítico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Mol Ecol ; 25(5): 1027-31, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26822117

RESUMO

Mobile genetic elements (MGEs), also called transposable elements (TEs), represent universal components of most genomes and are intimately involved in nearly all aspects of genome organization, function and evolution. However, there is currently a gap between the fast pace of TE discovery in silico, driven by the exponential growth of comparative genomic studies, and a limited number of experimental models amenable to more traditional in vitro and in vivo studies of structural, mechanistic and regulatory properties of diverse MGEs. Experimental and computational scientists came together to bridge this gap at a recent conference, 'Mobile Genetic Elements: in silico, in vitro, in vivo', held at the Marine Biological Laboratory (MBL) in Woods Hole, MA, USA.


Assuntos
Elementos de DNA Transponíveis , Biologia Computacional , Congressos como Assunto , Bases de Dados Genéticas , Endonucleases , Regulação da Expressão Gênica , Genômica , Inteínas , Íntrons , Transposases
17.
Nat Chem Biol ; 10(8): 686-91, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24952597

RESUMO

Spinach is an in vitro-selected RNA aptamer that binds a GFP-like ligand and activates its green fluorescence. Spinach is thus an RNA analog of GFP and has potentially widespread applications for in vivo labeling and imaging. We used antibody-assisted crystallography to determine the structures of Spinach both with and without bound fluorophore at 2.2-Å and 2.4-Å resolution, respectively. Spinach RNA has an elongated structure containing two helical domains separated by an internal bulge that folds into a G-quadruplex motif of unusual topology. The G-quadruplex motif and adjacent nucleotides comprise a partially preformed binding site for the fluorophore. The fluorophore binds in a planar conformation and makes extensive aromatic stacking and hydrogen bond interactions with the RNA. Our findings provide a foundation for structure-based engineering of new fluorophore-binding RNA aptamers.


Assuntos
Quadruplex G , RNA/química , Sequência de Bases , Compostos de Benzil/química , Compostos de Benzil/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Fluorescência , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde , Ligação de Hidrogênio , Imidazolinas/química , Imidazolinas/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA de Plantas/química , Spinacia oleracea/genética
18.
Nature ; 466(7308): 883-6, 2010 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-20703307

RESUMO

The eubacterial SOS system is a paradigm of cellular DNA damage and repair, and its activation can contribute to antibiotic resistance. Under normal conditions, LexA represses the transcription of many DNA repair proteins by binding to SOS 'boxes' in their operators. Under genotoxic stress, accumulating complexes of RecA, ATP and single-stranded DNA (ssDNA) activate LexA for autocleavage. To address how LexA recognizes its binding sites, we determined three crystal structures of Escherichia coli LexA in complex with SOS boxes. Here we report the structure of these LexA-DNA complexes. The DNA-binding domains of the LexA dimer interact with the DNA in the classical fashion of a winged helix-turn-helix motif. However, the wings of these two DNA-binding domains bind to the same minor groove of the DNA. These wing-wing contacts may explain why the spacing between the two half-sites of E. coli SOS boxes is invariant.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli , Multimerização Proteica , Resposta SOS em Genética/genética , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Motivos de Aminoácidos , Sequência de Bases , Cristalografia por Raios X , Dano ao DNA , Reparo do DNA/genética , DNA Bacteriano/química , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Recombinases Rec A/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Fatores de Transcrição Winged-Helix/química , Fatores de Transcrição Winged-Helix/metabolismo
19.
Mol Cell ; 30(2): 145-55, 2008 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-18439894

RESUMO

An essential feature of many site-specific recombination systems is their ability to regulate the direction and topology of recombination. Resolvases from the serine recombinase family assemble an interwound synaptic complex that harnesses negative supercoiling to drive the forward reaction and promote recombination between properly oriented sites. To better understand the interplay of catalytic and regulatory functions within these synaptic complexes, we have solved the structure of the regulatory site synapse in the Sin resolvase system. It reveals an unexpected synaptic interface between helix-turn-helix DNA-binding domains that is also highlighted in a screen for synapsis mutants. The tetramer defined by this interface provides the foundation for a robust model of the synaptic complex, assembled entirely from available crystal structures, that gives insight into how the catalytic activity of Sin and other serine recombinases may be regulated.


Assuntos
Proteínas de Bactérias/química , DNA Nucleotidiltransferases/química , DNA/química , Modelos Moleculares , Recombinação Genética , Proteínas de Bactérias/genética , Sítios de Ligação , Catálise , Cristalização , Cristalografia por Raios X , DNA Nucleotidiltransferases/genética , Dimerização , Mutação , Conformação Proteica
20.
J Biol Chem ; 288(40): 29206-14, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-23970547

RESUMO

Members of the serine family of site-specific DNA recombinases use an unusual constellation of amino acids to catalyze the formation and resolution of a covalent protein-DNA intermediate. A recent high resolution structure of the catalytic domain of Sin, a particularly well characterized family member, provided a detailed view of the catalytic site. To determine how the enzyme might protonate and stabilize the 3'O leaving group in the strand cleavage reaction, we examined how replacing this oxygen with a sulfur affected the cleavage rate by WT and mutant enzymes. To facilitate direct comparison of the cleavage rates, key experiments used suicide substrates that prevented religation after cleavage. The catalytic defect associated with mutation of one of six highly conserved arginine residues, Arg-69 in Sin, was partially rescued by a 3' phosphorothiolate substrate. We conclude that Arg-69 has an important role in stabilizing the 3'O leaving group and is the prime candidate for the general acid that protonates the 3'O, in good agreement with the position it occupies in the high resolution structure of the active site of Sin.


Assuntos
Ácidos/metabolismo , Arginina/metabolismo , Biocatálise , Clivagem do DNA , Recombinases/metabolismo , Serina/metabolismo , Domínio Catalítico , Concentração de Íons de Hidrogênio , Cinética , Proteínas Mutantes/metabolismo , Fosforilação , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA