Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.534
Filtrar
Mais filtros

Coleções SMS-SP
Intervalo de ano de publicação
1.
Cell ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39243762

RESUMO

Epithelial-to-mesenchymal transitions (EMTs) and extracellular matrix (ECM) remodeling are distinct yet important processes during carcinoma invasion and metastasis. Transforming growth factor ß (TGF-ß) and RAS, signaling through SMAD and RAS-responsive element-binding protein 1 (RREB1), jointly trigger expression of EMT and fibrogenic factors as two discrete arms of a common transcriptional response in carcinoma cells. Here, we demonstrate that both arms come together to form a program for lung adenocarcinoma metastasis and identify chromatin determinants tying the expression of the constituent genes to TGF-ß and RAS inputs. RREB1 localizes to H4K16acK20ac marks in histone H2A.Z-loaded nucleosomes at enhancers in the fibrogenic genes interleukin-11 (IL11), platelet-derived growth factor-B (PDGFB), and hyaluronan synthase 2 (HAS2), as well as the EMT transcription factor SNAI1, priming these enhancers for activation by a SMAD4-INO80 nucleosome remodeling complex in response to TGF-ß. These regulatory properties segregate the fibrogenic EMT program from RAS-independent TGF-ß gene responses and illuminate the operation and vulnerabilities of a bifunctional program that promotes metastatic outgrowth.

2.
Cell ; 186(4): 764-785.e21, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36803604

RESUMO

The choroid plexus (ChP) is the blood-cerebrospinal fluid (CSF) barrier and the primary source of CSF. Acquired hydrocephalus, caused by brain infection or hemorrhage, lacks drug treatments due to obscure pathobiology. Our integrated, multi-omic investigation of post-infectious hydrocephalus (PIH) and post-hemorrhagic hydrocephalus (PHH) models revealed that lipopolysaccharide and blood breakdown products trigger highly similar TLR4-dependent immune responses at the ChP-CSF interface. The resulting CSF "cytokine storm", elicited from peripherally derived and border-associated ChP macrophages, causes increased CSF production from ChP epithelial cells via phospho-activation of the TNF-receptor-associated kinase SPAK, which serves as a regulatory scaffold of a multi-ion transporter protein complex. Genetic or pharmacological immunomodulation prevents PIH and PHH by antagonizing SPAK-dependent CSF hypersecretion. These results reveal the ChP as a dynamic, cellularly heterogeneous tissue with highly regulated immune-secretory capacity, expand our understanding of ChP immune-epithelial cell cross talk, and reframe PIH and PHH as related neuroimmune disorders vulnerable to small molecule pharmacotherapy.


Assuntos
Plexo Corióideo , Hidrocefalia , Humanos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Plexo Corióideo/metabolismo , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/imunologia , Imunidade Inata , Síndrome da Liberação de Citocina/patologia
3.
Annu Rev Biochem ; 87: 1029-1060, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29709200

RESUMO

Over the past three decades, studies of ancient biomolecules-particularly ancient DNA, proteins, and lipids-have revolutionized our understanding of evolutionary history. Though initially fraught with many challenges, today the field stands on firm foundations. Researchers now successfully retrieve nucleotide and amino acid sequences, as well as lipid signatures, from progressively older samples, originating from geographic areas and depositional environments that, until recently, were regarded as hostile to long-term preservation of biomolecules. Sampling frequencies and the spatial and temporal scope of studies have also increased markedly, and with them the size and quality of the data sets generated. This progress has been made possible by continuous technical innovations in analytical methods, enhanced criteria for the selection of ancient samples, integrated experimental methods, and advanced computational approaches. Here, we discuss the history and current state of ancient biomolecule research, its applications to evolutionary inference, and future directions for this young and exciting field.


Assuntos
DNA Antigo , Evolução Molecular , Animais , Evolução Biológica , Extinção Biológica , Fósseis , Genômica , Humanos , Lipídeos/genética , Paleontologia , Filogenia , Proteínas/genética , Proteômica
4.
Cell ; 174(3): 505-520, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30053424

RESUMO

Although gene discovery in neuropsychiatric disorders, including autism spectrum disorder, intellectual disability, epilepsy, schizophrenia, and Tourette disorder, has accelerated, resulting in a large number of molecular clues, it has proven difficult to generate specific hypotheses without the corresponding datasets at the protein complex and functional pathway level. Here, we describe one path forward-an initiative aimed at mapping the physical and genetic interaction networks of these conditions and then using these maps to connect the genomic data to neurobiology and, ultimately, the clinic. These efforts will include a team of geneticists, structural biologists, neurobiologists, systems biologists, and clinicians, leveraging a wide array of experimental approaches and creating a collaborative infrastructure necessary for long-term investigation. This initiative will ultimately intersect with parallel studies that focus on other diseases, as there is a significant overlap with genes implicated in cancer, infectious disease, and congenital heart defects.


Assuntos
Mapeamento Cromossômico/métodos , Transtornos do Neurodesenvolvimento/genética , Biologia de Sistemas/métodos , Redes Reguladoras de Genes/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Humanos , Neurobiologia/métodos , Neuropsiquiatria
5.
Nat Immunol ; 21(12): 1506-1516, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33028979

RESUMO

A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic, although the immunological underpinnings of diverse disease outcomes remain to be defined. We performed detailed characterization of B cell responses through high-dimensional flow cytometry to reveal substantial heterogeneity in both effector and immature populations. More notably, critically ill patients displayed hallmarks of extrafollicular B cell activation and shared B cell repertoire features previously described in autoimmune settings. Extrafollicular activation correlated strongly with large antibody-secreting cell expansion and early production of high concentrations of SARS-CoV-2-specific neutralizing antibodies. Yet, these patients had severe disease with elevated inflammatory biomarkers, multiorgan failure and death. Overall, these findings strongly suggest a pathogenic role for immune activation in subsets of patients with COVID-19. Our study provides further evidence that targeted immunomodulatory therapy may be beneficial in specific patient subpopulations and can be informed by careful immune profiling.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Humanos , Imunofenotipagem
6.
Cell ; 167(1): 12-15, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27634325

RESUMO

This year's Lasker∼Debakey Clinical Medical Research Award honors Ralf Bartenschlager, Charles Rice, and Michael Sofia, pioneers in the development of curative and safe therapies for the 170 million people with hepatitis C virus infection.


Assuntos
Distinções e Prêmios , Medicina Clínica , Hepacivirus , Hepatite C Crônica/tratamento farmacológico , Antivirais/uso terapêutico , Progressão da Doença , Descoberta de Drogas , Doença Hepática Terminal/virologia , Hepacivirus/genética , Hepacivirus/isolamento & purificação , Hepacivirus/fisiologia , Hepatite C Crônica/epidemiologia , Hepatite C Crônica/prevenção & controle , Humanos
7.
Nature ; 626(8000): 881-890, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297124

RESUMO

The pace of human brain development is highly protracted compared with most other species1-7. The maturation of cortical neurons is particularly slow, taking months to years to develop adult functions3-5. Remarkably, such protracted timing is retained in cortical neurons derived from human pluripotent stem cells (hPSCs) during in vitro differentiation or upon transplantation into the mouse brain4,8,9. Those findings suggest the presence of a cell-intrinsic clock setting the pace of neuronal maturation, although the molecular nature of this clock remains unknown. Here we identify an epigenetic developmental programme that sets the timing of human neuronal maturation. First, we developed a hPSC-based approach to synchronize the birth of cortical neurons in vitro which enabled us to define an atlas of morphological, functional and molecular maturation. We observed a slow unfolding of maturation programmes, limited by the retention of specific epigenetic factors. Loss of function of several of those factors in cortical neurons enables precocious maturation. Transient inhibition of EZH2, EHMT1 and EHMT2 or DOT1L, at progenitor stage primes newly born neurons to rapidly acquire mature properties upon differentiation. Thus our findings reveal that the rate at which human neurons mature is set well before neurogenesis through the establishment of an epigenetic barrier in progenitor cells. Mechanistically, this barrier holds transcriptional maturation programmes in a poised state that is gradually released to ensure the prolonged timeline of human cortical neuron maturation.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Humanas , Células-Tronco Neurais , Neurogênese , Neurônios , Adulto , Animais , Humanos , Camundongos , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo , Fatores de Tempo , Transcrição Gênica
8.
Nature ; 627(8004): 564-571, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418889

RESUMO

Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species coexistence and the diversity of local tree species6,7. Previous analyses supporting such a latitudinal gradient in CNDD8,9 have suffered from methodological limitations related to the use of static data10-12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizing CNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests.


Assuntos
Biodiversidade , Florestas , Mapeamento Geográfico , Árvores , Modelos Biológicos , Especificidade da Espécie , Árvores/classificação , Árvores/fisiologia , Clima Tropical
9.
Annu Rev Neurosci ; 44: 425-447, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-33863253

RESUMO

What changes in neural architecture account for the emergence and expansion of dexterity in primates? Dexterity, or skill in performing motor tasks, depends on the ability to generate highly fractionated patterns of muscle activity. It also involves the spatiotemporal coordination of activity in proximal and distal muscles across multiple joints. Many motor skills require the generation of complex movement sequences that are only acquired and refined through extensive practice. Improvements in dexterity have enabled primates to manufacture and use tools and humans to engage in skilled motor behaviors such as typing, dance, musical performance, and sports. Our analysis leads to the following synthesis: The neural substrate that endows primates with their enhanced motor capabilities is due, in part, to (a) major organizational changes in the primary motor cortex and (b) the proliferation of output pathways from other areas of the cerebral cortex, especially from the motor areas on the medial wall of the hemisphere.


Assuntos
Córtex Motor , Animais , Destreza Motora , Movimento
10.
Nature ; 621(7980): 782-787, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37730987

RESUMO

The neurocranium is an integral part of the vertebrate head, itself a major evolutionary innovation1,2. However, its early history remains poorly understood, with great dissimilarity in form between the two living vertebrate groups: gnathostomes (jawed vertebrates) and cyclostomes (hagfishes and lampreys)2,3. The 100 Myr gap separating the Cambrian appearance of vertebrates4-6 from the earliest three-dimensionally preserved vertebrate neurocrania7 further obscures the origins of modern states. Here we use computed tomography to describe the cranial anatomy of an Ordovician stem-group gnathostome: Eriptychius americanus from the Harding Sandstone of Colorado, USA8. A fossilized head of Eriptychius preserves a symmetrical set of cartilages that we interpret as the preorbital neurocranium, enclosing the fronts of laterally placed orbits, terminally located mouth, olfactory bulbs and pineal organ. This suggests that, in the earliest gnathostomes, the neurocranium filled out the space between the dermal skeleton and brain, like in galeaspids, osteostracans and placoderms and unlike in cyclostomes2. However, these cartilages are not fused into a single neurocranial unit, suggesting that this is a derived gnathostome trait. Eriptychius fills a major temporal and phylogenetic gap in our understanding of the evolution of the gnathostome head, revealing a neurocranium with an anatomy unlike that of any previously described vertebrate.


Assuntos
Fósseis , Filogenia , Crânio , Vertebrados , Animais , Feiticeiras (Peixe)/anatomia & histologia , Imageamento Tridimensional , Lampreias/anatomia & histologia , Boca , Bulbo Olfatório , Glândula Pineal , Crânio/anatomia & histologia , Tomógrafos Computadorizados , Vertebrados/anatomia & histologia , Vertebrados/classificação , Colorado , Cartilagem/anatomia & histologia
11.
Nature ; 619(7968): 176-183, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37286593

RESUMO

Chromosomal instability (CIN) and epigenetic alterations are characteristics of advanced and metastatic cancers1-4, but whether they are mechanistically linked is unknown. Here we show that missegregation of mitotic chromosomes, their sequestration in micronuclei5,6 and subsequent rupture of the micronuclear envelope7 profoundly disrupt normal histone post-translational modifications (PTMs), a phenomenon conserved across humans and mice, as well as in cancer and non-transformed cells. Some of the changes in histone PTMs occur because of the rupture of the micronuclear envelope, whereas others are inherited from mitotic abnormalities before the micronucleus is formed. Using orthogonal approaches, we demonstrate that micronuclei exhibit extensive differences in chromatin accessibility, with a strong positional bias between promoters and distal or intergenic regions, in line with observed redistributions of histone PTMs. Inducing CIN causes widespread epigenetic dysregulation, and chromosomes that transit in micronuclei experience heritable abnormalities in their accessibility long after they have been reincorporated into the primary nucleus. Thus, as well as altering genomic copy number, CIN promotes epigenetic reprogramming and heterogeneity in cancer.


Assuntos
Instabilidade Cromossômica , Segregação de Cromossomos , Cromossomos , Epigênese Genética , Micronúcleos com Defeito Cromossômico , Neoplasias , Animais , Humanos , Camundongos , Cromatina/genética , Instabilidade Cromossômica/genética , Cromossomos/genética , Cromossomos/metabolismo , Histonas/química , Histonas/metabolismo , Neoplasias/genética , Neoplasias/patologia , Mitose , Variações do Número de Cópias de DNA , Processamento de Proteína Pós-Traducional
12.
Nature ; 611(7934): 139-147, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36044993

RESUMO

Severe SARS-CoV-2 infection1 has been associated with highly inflammatory immune activation since the earliest days of the COVID-19 pandemic2-5. More recently, these responses have been associated with the emergence of self-reactive antibodies with pathologic potential6-10, although their origins and resolution have remained unclear11. Previously, we and others have identified extrafollicular B cell activation, a pathway associated with the formation of new autoreactive antibodies in chronic autoimmunity12,13, as a dominant feature of severe and critical COVID-19 (refs. 14-18). Here, using single-cell B cell repertoire analysis of patients with mild and severe disease, we identify the expansion of a naive-derived, low-mutation IgG1 population of antibody-secreting cells (ASCs) reflecting features of low selective pressure. These features correlate with progressive, broad, clinically relevant autoreactivity, particularly directed against nuclear antigens and carbamylated proteins, emerging 10-15 days after the onset of symptoms. Detailed analysis of the low-selection compartment shows a high frequency of clonotypes specific for both SARS-CoV-2 and autoantigens, including pathogenic autoantibodies against the glomerular basement membrane. We further identify the contraction of this pathway on recovery, re-establishment of tolerance standards and concomitant loss of acute-derived ASCs irrespective of antigen specificity. However, serological autoreactivity persists in a subset of patients with postacute sequelae, raising important questions as to the contribution of emerging autoreactivity to continuing symptomology on recovery. In summary, this study demonstrates the origins, breadth and resolution of autoreactivity in severe COVID-19, with implications for early intervention and the treatment of patients with post-COVID sequelae.


Assuntos
Autoanticorpos , Linfócitos B , COVID-19 , Humanos , Autoanticorpos/imunologia , Linfócitos B/imunologia , Linfócitos B/patologia , COVID-19/imunologia , COVID-19/patologia , COVID-19/fisiopatologia , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Imunoglobulina G/imunologia , Análise de Célula Única , Autoantígenos/imunologia , Membrana Basal/imunologia , Síndrome de COVID-19 Pós-Aguda
13.
Nature ; 608(7922): 336-345, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35896751

RESUMO

In European and many African, Middle Eastern and southern Asian populations, lactase persistence (LP) is the most strongly selected monogenic trait to have evolved over the past 10,000 years1. Although the selection of LP and the consumption of prehistoric milk must be linked, considerable uncertainty remains concerning their spatiotemporal configuration and specific interactions2,3. Here we provide detailed distributions of milk exploitation across Europe over the past 9,000 years using around 7,000 pottery fat residues from more than 550 archaeological sites. European milk use was widespread from the Neolithic period onwards but varied spatially and temporally in intensity. Notably, LP selection varying with levels of prehistoric milk exploitation is no better at explaining LP allele frequency trajectories than uniform selection since the Neolithic period. In the UK Biobank4,5 cohort of 500,000 contemporary Europeans, LP genotype was only weakly associated with milk consumption and did not show consistent associations with improved fitness or health indicators. This suggests that other reasons for the beneficial effects of LP should be considered for its rapid frequency increase. We propose that lactase non-persistent individuals consumed milk when it became available but, under conditions of famine and/or increased pathogen exposure, this was disadvantageous, driving LP selection in prehistoric Europe. Comparison of model likelihoods indicates that population fluctuations, settlement density and wild animal exploitation-proxies for these drivers-provide better explanations of LP selection than the extent of milk exploitation. These findings offer new perspectives on prehistoric milk exploitation and LP evolution.


Assuntos
Arqueologia , Indústria de Laticínios , Doença , Genética Populacional , Lactase , Leite , Seleção Genética , Animais , Animais Selvagens , Bancos de Espécimes Biológicos , Cerâmica/história , Estudos de Coortes , Indústria de Laticínios/história , Europa (Continente)/epidemiologia , Europa (Continente)/etnologia , Fome Epidêmica/estatística & dados numéricos , Frequência do Gene , Genótipo , História Antiga , Humanos , Lactase/genética , Leite/metabolismo , Reino Unido
14.
Nature ; 607(7918): 313-320, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35768506

RESUMO

The grey wolf (Canis lupus) was the first species to give rise to a domestic population, and they remained widespread throughout the last Ice Age when many other large mammal species went extinct. Little is known, however, about the history and possible extinction of past wolf populations or when and where the wolf progenitors of the present-day dog lineage (Canis familiaris) lived1-8. Here we analysed 72 ancient wolf genomes spanning the last 100,000 years from Europe, Siberia and North America. We found that wolf populations were highly connected throughout the Late Pleistocene, with levels of differentiation an order of magnitude lower than they are today. This population connectivity allowed us to detect natural selection across the time series, including rapid fixation of mutations in the gene IFT88 40,000-30,000 years ago. We show that dogs are overall more closely related to ancient wolves from eastern Eurasia than to those from western Eurasia, suggesting a domestication process in the east. However, we also found that dogs in the Near East and Africa derive up to half of their ancestry from a distinct population related to modern southwest Eurasian wolves, reflecting either an independent domestication process or admixture from local wolves. None of the analysed ancient wolf genomes is a direct match for either of these dog ancestries, meaning that the exact progenitor populations remain to be located.


Assuntos
Cães , Genoma , Genômica , Filogenia , Lobos , África , Animais , DNA Antigo/análise , Cães/genética , Domesticação , Europa (Continente) , Genoma/genética , História Antiga , Oriente Médio , Mutação , América do Norte , Seleção Genética , Sibéria , Proteínas Supressoras de Tumor/genética , Lobos/classificação , Lobos/genética
15.
Genome Res ; 34(9): 1355-1364, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39111816

RESUMO

Circular extrachromosomal DNA (ecDNA) is a form of oncogene amplification found across cancer types and associated with poor outcome in patients. ecDNA can be structurally complex and can contain rearranged DNA sequences derived from multiple chromosome locations. As the structure of ecDNA can impact oncogene regulation and may indicate mechanisms of its formation, disentangling it at high resolution from sequencing data is essential. Even though methods have been developed to identify and reconstruct ecDNA in cancer genome sequencing, it remains challenging to resolve complex ecDNA structures, in particular amplicons with shared genomic footprints. We here introduce Decoil, a computational method that combines a breakpoint-graph approach with LASSO regression to reconstruct complex ecDNA and deconvolve co-occurring ecDNA elements with overlapping genomic footprints from long-read nanopore sequencing. Decoil outperforms de novo assembly and alignment-based methods in simulated long-read sequencing data for both simple and complex ecDNAs. Applying Decoil on whole-genome sequencing data uncovered different ecDNA topologies and explored ecDNA structure heterogeneity in neuroblastoma tumors and cell lines, indicating that this method may improve ecDNA structural analyses in cancer.


Assuntos
DNA Circular , Humanos , DNA Circular/genética , Análise de Sequência de DNA/métodos , Sequenciamento por Nanoporos/métodos , Software , Biologia Computacional/métodos , Neuroblastoma/genética , Linhagem Celular Tumoral , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genoma Humano
16.
Cell ; 150(6): 1096-9, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22980971

RESUMO

The 2012 Lasker-DeBakey Clinical Medical Research Award will be conferred on Thomas Starzl of the University of Pittsburgh School of Medicine in Pittsburgh, Pennsylvania, USA and Roy Calne of the University of Cambridge in Cambridge, UK. They are recognized for pioneering the development of liver transplantation, an intervention that saves 20,000 lives world-wide each year.


Assuntos
Distinções e Prêmios , Transplante de Fígado/história , História do Século XX , Humanos , Imunossupressores/uso terapêutico , Fígado/fisiologia , Falência Hepática/terapia , Transplante de Fígado/imunologia , Obtenção de Tecidos e Órgãos , Reino Unido , Estados Unidos
17.
Nature ; 597(7876): 376-380, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34471286

RESUMO

Pleistocene hominin dispersals out of, and back into, Africa necessarily involved traversing the diverse and often challenging environments of Southwest Asia1-4. Archaeological and palaeontological records from the Levantine woodland zone document major biological and cultural shifts, such as alternating occupations by Homo sapiens and Neanderthals. However, Late Quaternary cultural, biological and environmental records from the vast arid zone that constitutes most of Southwest Asia remain scarce, limiting regional-scale insights into changes in hominin demography and behaviour1,2,5. Here we report a series of dated palaeolake sequences, associated with stone tool assemblages and vertebrate fossils, from the Khall Amayshan 4 and Jubbah basins in the Nefud Desert. These findings, including the oldest dated hominin occupations in Arabia, reveal at least five hominin expansions into the Arabian interior, coinciding with brief 'green' windows of reduced aridity approximately 400, 300, 200, 130-75 and 55 thousand years ago. Each occupation phase is characterized by a distinct form of material culture, indicating colonization by diverse hominin groups, and a lack of long-term Southwest Asian population continuity. Within a general pattern of African and Eurasian hominin groups being separated by Pleistocene Saharo-Arabian aridity, our findings reveal the tempo and character of climatically modulated windows for dispersal and admixture.


Assuntos
Hominidae , Migração Humana/história , Animais , Antropologia , Arábia , Ásia , História Antiga , Paleontologia , Comportamento de Utilização de Ferramentas
18.
Mol Cell ; 74(4): 637-639, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100244

RESUMO

Despite being among the first discovered mammalian innate immune sensor, NLRP1B (NLR pyrin domain-containing1B) activation and its molecular basis have remained elusive. Two recent studies have unveiled N-terminal degradation as a common mechanism for pathogen-mediated NLRP1B inflammasome activation in mammals.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Imunidade Inata/genética , Inflamassomos/genética , Animais , Humanos , Inflamassomos/imunologia , Interleucina-1beta/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Proteólise , Células RAW 264.7 , Shigella flexneri/imunologia , Shigella flexneri/patogenicidade
19.
Proc Natl Acad Sci U S A ; 121(17): e2320239121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38630721

RESUMO

Collective motion is ubiquitous in nature; groups of animals, such as fish, birds, and ungulates appear to move as a whole, exhibiting a rich behavioral repertoire that ranges from directed movement to milling to disordered swarming. Typically, such macroscopic patterns arise from decentralized, local interactions among constituent components (e.g., individual fish in a school). Preeminent models of this process describe individuals as self-propelled particles, subject to self-generated motion and "social forces" such as short-range repulsion and long-range attraction or alignment. However, organisms are not particles; they are probabilistic decision-makers. Here, we introduce an approach to modeling collective behavior based on active inference. This cognitive framework casts behavior as the consequence of a single imperative: to minimize surprise. We demonstrate that many empirically observed collective phenomena, including cohesion, milling, and directed motion, emerge naturally when considering behavior as driven by active Bayesian inference-without explicitly building behavioral rules or goals into individual agents. Furthermore, we show that active inference can recover and generalize the classical notion of social forces as agents attempt to suppress prediction errors that conflict with their expectations. By exploring the parameter space of the belief-based model, we reveal nontrivial relationships between the individual beliefs and group properties like polarization and the tendency to visit different collective states. We also explore how individual beliefs about uncertainty determine collective decision-making accuracy. Finally, we show how agents can update their generative model over time, resulting in groups that are collectively more sensitive to external fluctuations and encode information more robustly.


Assuntos
Comportamento de Massa , Modelos Biológicos , Animais , Teorema de Bayes , Movimento , Movimento (Física) , Peixes , Comportamento Social , Comportamento Animal
20.
Proc Natl Acad Sci U S A ; 121(26): e2401154121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38889150

RESUMO

Almost all elongator tRNAs (Transfer RNAs) harbor 5-methyluridine 54 and pseudouridine 55 in the T arm, generated by the enzymes TrmA and TruB, respectively, in Escherichia coli. TrmA and TruB both act as tRNA chaperones, and strains lacking trmA or truB are outcompeted by wild type. Here, we investigate how TrmA and TruB contribute to cellular fitness. Deletion of trmA and truB in E. coli causes a global decrease in aminoacylation and alters other tRNA modifications such as acp3U47. While overall protein synthesis is not affected in ΔtrmA and ΔtruB strains, the translation of a subset of codons is significantly impaired. As a consequence, we observe translationally reduced expression of many specific proteins, that are either encoded with a high frequency of these codons or that are large proteins. The resulting proteome changes are not related to a specific growth phenotype, but overall cellular fitness is impaired upon deleting trmA and truB in accordance with a general protein synthesis impact. In conclusion, we demonstrate that universal modifications of the tRNA T arm are critical for global tRNA function by enhancing tRNA maturation, tRNA aminoacylation, and translation, thereby improving cellular fitness irrespective of the growth conditions which explains the conservation of trmA and truB.


Assuntos
Escherichia coli , RNA de Transferência , RNA de Transferência/metabolismo , RNA de Transferência/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Biossíntese de Proteínas , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , tRNA Metiltransferases/metabolismo , tRNA Metiltransferases/genética , Processamento Pós-Transcricional do RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA