Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inhal Toxicol ; 35(7-8): 214-229, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37339372

RESUMO

BACKGROUND: Exposure to asbestos is associated with malignant and nonmalignant respiratory disease. To strengthen the scientific basis for risk assessment on fibers, the National Institute of Environmental Health Sciences (NIEHS) has initiated a series of studies to address fundamental questions on the toxicology of naturally occurring asbestos and related mineral fibers after inhalation exposure. A prototype nose-only exposure system was previously developed and validated. The prototype system was expanded to a large-scale exposure system in this study for conducting subsequent in vivo rodent inhalation studies of Libby amphibole (LA) 2007, selected as a model fiber. RESULTS: The exposure system consisting of six exposure carousels was able to independently deliver stable LA 2007 aerosol to individual carousels at target concentrations of 0 (control group), 0.1, 0.3, 1, 3, or 10 mg/m3. A single aerosol generator was used to provide aerosol to all carousels to ensure that exposure atmospheres were chemically and physically similar, with aerosol concentration as the only major variable among the carousels. Transmission electron microscopy (TEM) coupled with energy dispersive spectrometry (EDS) and selected area electron diffraction (SAED) analysis of aerosol samples collected at the exposure ports indicated the fiber dimensions, chemical composition, and mineralogy were equivalent across exposure carousels and were comparable to the bulk LA 2007 material. CONCLUSION: The exposure system developed is ready for use in conducting nose-only inhalation toxicity studies of LA 2007 in rats. The exposure system is anticipated to have applicability for the inhalation toxicity evaluation of other natural mineral fibers of concern.


Assuntos
Amiantos Anfibólicos , Amianto , Ratos , Animais , Amiantos Anfibólicos/toxicidade , Fibras Minerais , Aerossóis , Exposição por Inalação/efeitos adversos
2.
Inhal Toxicol ; 35(7-8): 201-213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37339371

RESUMO

BACKGROUND: Asbestos has been classified as a human carcinogen, and exposure may increase the risk of diseases associated with impaired respiratory function. As the range of health effects and airborne concentrations that result in health effects across asbestos-related natural mineral fiber types are not fully understood, the National Institute of Environmental Health Sciences has established a series of research studies to characterize hazards of natural mineral fibers after inhalation exposure. This paper presents the method development work of this research project. RESULTS: A prototype nose-only exposure system was fabricated to explore the feasibility of generating natural mineral fiber aerosol for in vivo inhalation toxicity studies. The prototype system consisted of a slide bar aerosol generator, a distribution/delivery system and an exposure carousel. Characterization tests conducted using Libby Amphibole 2007 (LA 2007) demonstrated the prototype system delivered stable and controllable aerosol concentration to the exposure carousel. Transmission electron microscopy (TEM) analysis of aerosol samples collected at the exposure port showed the average fiber length and width were comparable to the bulk LA 2007. TEM coupled with energy dispersive spectrometry (EDS) and selected area electron diffraction (SAED) analysis further confirmed fibers from the aerosol samples were consistent with the bulk LA 2007 chemically and physically. CONCLUSIONS: Characterization of the prototype system demonstrated feasibility of generating LA 2007 fiber aerosols appropriate for in vivo inhalation toxicity studies. The methods developed in this study are suitable to apply to a multiple-carousel exposure system for a rat inhalation toxicity testing using LA 2007.


Assuntos
Amiantos Anfibólicos , Amianto , Humanos , Ratos , Animais , Amiantos Anfibólicos/toxicidade , Fibras Minerais , Amianto/análise , Carcinógenos/toxicidade , Aerossóis
3.
Inhal Toxicol ; 31(5): 192-202, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31345048

RESUMO

Background: Increasing evidence from rodent studies indicates that inhaled multi-walled carbon nanotubes (MWCNTs) have harmful effects on the lungs. In this study, we examined the effects of inhalation exposure to MWCNTs on allergen-induced airway inflammation and fibrosis. We hypothesized that inhalation pre-exposure to MWCNTs would render mice susceptible to developing allergic lung disease induced by house dust mite (HDM) allergen. Methods: Male B6C3F1/N mice were exposed by whole-body inhalation for 6 h a day, 5 d a week, for 30 d to air control or 0.06, 0.2, and 0.6 mg/m3 of MWCNTs. The exposure atmospheres were agglomerates (1.4-1.8 µm) composed of MWCNTs (average diameter 16 nm; average length 2.4 µm; 0.52% Ni). Mice then received 25 µg of HDM extract by intranasal instillation 6 times over 3 weeks. Necropsy was performed at 3 and 30 d after the final HDM dose to collect serum, bronchoalveolar lavage fluid (BALF), and lung tissue for histopathology. Results: MWCNT exposure at the highest dose inhibited HDM-induced serum IgE levels, IL-13 protein levels in BALF, and airway mucus production. However, perivascular and peribronchiolar inflammatory lesions were observed in the lungs of mice at 3 d with MWCNT and HDM, but not MWCNT or HDM alone. Moreover, combined HDM and MWCNT exposure increased airway fibrosis in the lungs of mice. Conclusions: Inhalation pre-exposure to MWCNTs inhibited HDM-induced TH2 immune responses, yet this combined exposure resulted in vascular inflammation and airway fibrosis, indicating that MWCNT pre-exposure alters the immune response to allergens.


Assuntos
Antígenos de Dermatophagoides/imunologia , Hipersensibilidade/fisiopatologia , Exposição por Inalação/efeitos adversos , Pulmão/fisiologia , Nanotubos de Carbono/toxicidade , Animais , Líquido da Lavagem Broncoalveolar , Relação Dose-Resposta Imunológica , Fibrose , Imunoglobulina E/sangue , Interleucina-13/análise , Masculino , Camundongos , Células Th2/imunologia
4.
Int J Toxicol ; 32(4 Suppl): 108S-17S, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23929444

RESUMO

Male Hartley guinea pigs and male rhesus macaques were used to determine an efficacious dose of 1,1'-methylenebis{4-[(hydroxyimino)methyl] pyridinium} dimethanesulfonate (MMB4 DMS) that would result in 80% survival, 24 hours following a single exposure to cyclosarin (GF). The pharmacokinetic/pharmacodynamic relationship between acetylcholinesterase activity and MMB4 plasma concentrations relative to survival was evaluated. Guinea pigs and non-human primates (NHPs) were concurrently administered MMB4 DMS (guinea pigs: 0, 10, 30, or 40 mg/kg, intramuscular [IM] and NHPs: 0.1, 1, 5, 10, or 20 mg/kg, IM), atropine, and diazepam following a 3 × median lethal dose (LD50) GF challenge. Clinical observations were evaluated using a quality-of-life (QOL) scoring system. All GF-exposed animals exhibited typical signs of nerve agent poisoning immediately following challenge. In guinea pigs, 24-hour survival was 0%, 50%, 90%, and 90% for 0, 10, 30, and 40 mg/kg MMB4 DMS groups, respectively. In addition, nearly all animals surviving to 24 hours were clinically normal, with many in the 30 and 40 mg/kg MMB4 DMS dose group observed as normal by 4 hours post-challenge. In NHPs, survival was 100% for all treatment groups, with all animals noted as clinically normal by 48 hours. Following treatment with atropine/MMB4 DMS/diazepam, NHPs exhibited dose- and temporal-related decreases in incidence and duration of the clinical signs of toxicity. The QOL scores improved with increasing MMB4 DMS dose in both species. The estimated ED80s were 25.5 mg/kg MMB4 DMS (human equivalent dose [HED] of 5.5 mg/kg) and ≤ 0.1 mg/kg (HED of 0.03 mg/kg) in guinea pigs and NHPs, respectively.


Assuntos
Antídotos/farmacocinética , Antídotos/uso terapêutico , Compostos Organofosforados/toxicidade , Oximas/farmacocinética , Oximas/uso terapêutico , Animais , Antídotos/administração & dosagem , Atropina/uso terapêutico , Inibidores da Colinesterase/toxicidade , Diazepam/uso terapêutico , Relação Dose-Resposta a Droga , Cobaias , Macaca mulatta , Masculino , Oximas/administração & dosagem
5.
Int J Toxicol ; 32(4 Suppl): 99S-107S, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23929454

RESUMO

Acetylcholinesterase (AChE) reactivation studies were conducted in guinea pigs (GPs) and nonhuman primates (NHPs) to determine the 1,1'-methylenebis{4-[(hydroxyimino)methyl] pyridinium} dimethanesulfonate (MMB4 DMS) dose that reactivated at least 20% of blood AChE within 15 minutes following cyclosarin (GF) dosing (used as the criterion for efficacy). Male GPs and male rhesus macaques (NHPs) were pretreated with atropine 15 minutes prior to GF administration (1 × median lethal dose [LD50]) and MMB4 DMS 15 minutes following GF administration. The GP survival was 5 of 8, 8 of 8, 8 of 8, and 6 of 8 for the 0.75, 3.0, 6.0, or 12.0 mg/kg MMB4 DMS treatment groups, respectively. In NHPs, survival was 6 of 6 at 0.5, 1.2, 3.0, or 9.3 mg/kg MMB4 DMS, respectively, 24 hours post-challenge, with the majority of animals noted as clinically normal by 24 hours. Pharmacokinetic/pharmacodynamic modeling revealed that 1.8 mg/kg in GPs or 0.013 mg/kg in NHPs would result in an average 20% reactivation; human equivalent doses were calculated as 0.39 mg/kg (based on GP data) and 0.004 mg/kg (based on NHP data). The model suggested that MMB4 plasma concentrations of 1000 ng/mL and AChE reactivation of 80% would be most effective. Although a 0.5 mg/kg MMB4 DMS dose in NHPs resulted in 100% survival and an average of 78% AChE reactivation, adverse effects associated with GF administration were still observed 24 hours post-challenge (tremors, mydriasis, and weakness were observed in 3 of 6 animals). In comparison, 6 of 6 animals treated with 1.2 mg/kg MMB4 DMS were observed as clinically normal 24 hours post-challenge.


Assuntos
Acetilcolinesterase/metabolismo , Antídotos/uso terapêutico , Inibidores da Colinesterase/toxicidade , Compostos Organofosforados/toxicidade , Oximas/uso terapêutico , Animais , Antídotos/administração & dosagem , Cobaias , Dose Letal Mediana , Macaca mulatta , Masculino , Oximas/administração & dosagem , Oximas/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA