Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
1.
Plant J ; 119(1): 153-175, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593295

RESUMO

Plant acclimation to an ever-changing environment is decisive for growth, reproduction, and survival. Light availability limits biomass production on both ends of the intensity spectrum. Therefore, the adjustment of plant metabolism is central to high-light (HL) acclimation, and the accumulation of photoprotective anthocyanins is commonly observed. However, mechanisms and factors regulating the HL acclimation response are less clear. Two Arabidopsis mutants of spliceosome components exhibiting a pronounced anthocyanin overaccumulation in HL were isolated from a forward genetic screen for new factors crucial for plant acclimation. Time-resolved physiological, transcriptome, and metabolome analysis revealed a vital function of the spliceosome components for rapidly adjusting gene expression and metabolism. Deficiency of INCREASED LEVEL OF POLYPLOIDY1 (ILP1), NTC-RELATED PROTEIN1 (NTR1), and PLEIOTROPIC REGULATORY LOCUS1 (PRL1) resulted in a marked overaccumulation of carbohydrates and strongly diminished amino acid biosynthesis in HL. While not generally limited in N-assimilation, ilp1, ntr1, and prl1 showed higher glutamate levels and reduced amino acid biosynthesis in HL. The comprehensive analysis reveals a function of the spliceosome components in the conditional regulation of the carbon:nitrogen balance and the accumulation of anthocyanins during HL acclimation. The importance of gene expression, metabolic regulation, and re-direction of carbon towards anthocyanin biosynthesis for HL acclimation are discussed.


Assuntos
Aclimatação , Proteínas de Arabidopsis , Arabidopsis , Carbono , Regulação da Expressão Gênica de Plantas , Luz , Nitrogênio , Spliceossomos , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Spliceossomos/metabolismo , Spliceossomos/genética , Carbono/metabolismo , Nitrogênio/metabolismo , Antocianinas/metabolismo
2.
Plant J ; 120(3): 1064-1078, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39323000

RESUMO

Arabidopsis uracil phosphoribosyltransferase (UPP) is an essential enzyme and plants lacking this enzyme are strongly compromised in chloroplast function. Our analysis of UPP amiRNA mutants has confirmed that this vital function is crucial to establish a fully functional photosynthesis as the RIESKE iron sulfur protein (PetC) is almost absent, leading to a block in photosynthetic electron transport. Interestingly, this function appears to be unrelated to nucleotide homeostasis since nucleotide levels were not altered in the studied mutants. Transcriptomics and proteomic analysis showed that protein homeostasis but not gene expression is most likely responsible for this observation and high light provoked an upregulation of protease levels, including thylakoid filamentation temperature-sensitive 1, 5 (FtsH), caseinolytic protease proteolytic subunit 1 (ClpP1), and processing peptidases, as well as components of the chloroplast protein import machinery in UPP amiRNA lines. Strongly reduced PetC amounts were not only detected by immunoblot from mature plants but in addition in a de-etiolation experiment with young seedlings and are causing reduced high light-induced non-photochemical quenching Φ(NPQ) but increased unregulated energy dissipation Φ(NO). This impaired photosynthesis results in an inability to induce flavonoid biosynthesis. In addition, the levels of the osmoprotectants raffinose, proline, and fumarate were found to be reduced. In sum, our work suggests that UPP assists in stabilization PetC during import, processing or targeting to the thylakoid membrane, or protects it against proteolytic degradation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Complexo Citocromos b6f , Pentosiltransferases , Fotossíntese , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fotossíntese/fisiologia , Pentosiltransferases/metabolismo , Pentosiltransferases/genética , Complexo Citocromos b6f/metabolismo , Complexo Citocromos b6f/genética , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Tilacoides/metabolismo , Transporte de Elétrons
3.
Immunity ; 45(5): 1148-1161, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27851915

RESUMO

The impact of epigenetics on the differentiation of memory T (Tmem) cells is poorly defined. We generated deep epigenomes comprising genome-wide profiles of DNA methylation, histone modifications, DNA accessibility, and coding and non-coding RNA expression in naive, central-, effector-, and terminally differentiated CD45RA+ CD4+ Tmem cells from blood and CD69+ Tmem cells from bone marrow (BM-Tmem). We observed a progressive and proliferation-associated global loss of DNA methylation in heterochromatic parts of the genome during Tmem cell differentiation. Furthermore, distinct gradually changing signatures in the epigenome and the transcriptome supported a linear model of memory development in circulating T cells, while tissue-resident BM-Tmem branched off with a unique epigenetic profile. Integrative analyses identified candidate master regulators of Tmem cell differentiation, including the transcription factor FOXP1. This study highlights the importance of epigenomic changes for Tmem cell biology and demonstrates the value of epigenetic data for the identification of lineage regulators.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Epigênese Genética/imunologia , Epigenômica/métodos , Memória Imunológica/imunologia , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica/métodos , Humanos , Aprendizado de Máquina , Reação em Cadeia da Polimerase , Transcriptoma
4.
BMC Plant Biol ; 24(1): 278, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609866

RESUMO

BACKGROUND: The availability of soil phosphorus (P) often limits the productivities of wet tropical lowland forests. Little is known, however, about the metabolomic profile of different chemical P compounds with potentially different uses and about the cycling of P and their variability across space under different tree species in highly diverse tropical rainforests. RESULTS: We hypothesised that the different strategies of the competing tree species to retranslocate, mineralise, mobilise, and take up P from the soil would promote distinct soil 31P profiles. We tested this hypothesis by performing a metabolomic analysis of the soils in two rainforests in French Guiana using 31P nuclear magnetic resonance (NMR). We analysed 31P NMR chemical shifts in soil solutions of model P compounds, including inorganic phosphates, orthophosphate mono- and diesters, phosphonates, and organic polyphosphates. The identity of the tree species (growing above the soil samples) explained > 53% of the total variance of the 31P NMR metabolomic profiles of the soils, suggesting species-specific ecological niches and/or species-specific interactions with the soil microbiome and soil trophic web structure and functionality determining the use and production of P compounds. Differences at regional and topographic levels also explained some part of the the total variance of the 31P NMR profiles, although less than the influence of the tree species. Multivariate analyses of soil 31P NMR metabolomics data indicated higher soil concentrations of P biomolecules involved in the active use of P (nucleic acids and molecules involved with energy and anabolism) in soils with lower concentrations of total soil P and higher concentrations of P-storing biomolecules in soils with higher concentrations of total P. CONCLUSIONS: The results strongly suggest "niches" of soil P profiles associated with physical gradients, mostly topographic position, and with the specific distribution of species along this gradient, which is associated with species-specific strategies of soil P mineralisation, mobilisation, use, and uptake.


Assuntos
Microbiota , Fósforo , Floresta Úmida , Árvores , Guiana Francesa , Fosfatos , Solo
5.
Plant Cell Environ ; 47(12): 5411-5423, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39189985

RESUMO

Understanding the dynamics of δ13C and δ18O in modern resin is crucial for interpreting (sub)fossilized resin records and resin production dynamics. We measured the δ13C and δ18O offsets between resin acids and their precursor molecules in the top-canopy twigs and breast-height stems of mature Pinus sylvestris trees. We also investigated the physiological and environmental signals imprinted in resin δ13C and δ18O at an intra-seasonal scale. Resin δ13C was c. 2‰ lower than sucrose δ13C, in both twigs and stems, likely due to the loss of 13C-enriched C-1 atoms of pyruvate during isoprene formation and kinetic isotope effects during diterpene synthesis. Resin δ18O was c. 20‰ higher than xylem water δ18O and c. 20‰ lower than δ18O of water-soluble carbohydrates, possibly caused by discrimination against 18O during O2-based diterpene oxidation and 35%-50% oxygen atom exchange with water. Resin δ13C and δ18O recorded a strong signal of soil water potential; however, their overall capacity to infer intraseasonal environmental changes was limited by their temporal, within-tree and among-tree variations. Future studies should validate the potential isotope fractionation mechanisms associated with resin synthesis and explore the use of resin δ13C and δ18O as a long-term proxy for physiological and environmental changes.


Assuntos
Isótopos de Carbono , Isótopos de Oxigênio , Estações do Ano , Isótopos de Oxigênio/metabolismo , Isótopos de Carbono/análise , Pinus sylvestris/metabolismo , Pinus sylvestris/fisiologia , Resinas Vegetais/metabolismo , Água/metabolismo , Solo/química , Caules de Planta/metabolismo , Caules de Planta/fisiologia , Caules de Planta/química , Xilema/metabolismo , Xilema/química , Xilema/fisiologia , Meio Ambiente
6.
Glob Chang Biol ; 30(5): e17311, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38742695

RESUMO

The soil microbial carbon pump (MCP) is increasingly acknowledged as being directly linked to soil organic carbon (SOC) accumulation and stability. Given the close coupling of carbon (C) and nitrogen (N) cycles and the constraints imposed by their stoichiometry on microbial growth, N addition might affect microbial growth strategies with potential consequences for necromass formation and carbon stability. However, this topic remains largely unexplored. Based on two multi-level N fertilizer experiments over 10 years in two soils with contrasting soil fertility located in the North (Cambisol, carbon-poor) and Southwest (Luvisol, carbon-rich), we hypothesized that different resource demands of microorganism elicit a trade-off in microbial growth potential (Y-strategy) and resource-acquisition (A-strategy) in response to N addition, and consequently on necromass formation and soil carbon stability. We combined measurements of necromass metrics (MCP efficacy) and soil carbon stability (chemical composition and mineral associated organic carbon) with potential changes in microbial life history strategies (assessed via soil metagenomes and enzymatic activity analyses). The contribution of microbial necromass to SOC decreased with N addition in the Cambisol, but increased in the Luvisol. Soil microbial life strategies displayed two distinct responses in two soils after N amendment: shift toward A-strategy (Cambisol) or Y-strategy (Luvisol). These divergent responses are owing to the stoichiometric imbalance between microbial demands and resource availability for C and N, which presented very distinct patterns in the two soils. The partial correlation analysis further confirmed that high N addition aggravated stoichiometric carbon demand, shifting the microbial community strategy toward resource-acquisition which reduced carbon stability in Cambisol. In contrast, the microbial Y-strategy had the positive direct effect on MCP efficacy in Luvisol, which greatly enhanced carbon stability. Such findings provide mechanistic insights into the stoichiometric regulation of MCP efficacy, and how this is mediated by site-specific trade-offs in microbial life strategies, which contribute to improving our comprehension of soil microbial C sequestration and potential optimization of agricultural N management.


Assuntos
Carbono , Fertilizantes , Nitrogênio , Microbiologia do Solo , Solo , Solo/química , Carbono/metabolismo , Carbono/análise , Nitrogênio/metabolismo , Nitrogênio/análise , Fertilizantes/análise , Ciclo do Carbono , Microbiota
7.
Environ Microbiol ; 25(5): 1055-1067, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36651641

RESUMO

Nitrite-oxidizing bacteria (NOB) catalyse the second nitrification step and are the main biological source of nitrate. The most diverse and widespread NOB genus is Nitrospira, which also contains complete ammonia oxidizers (comammox) that oxidize ammonia to nitrate. To date, little is known about the occurrence and biology of comammox and canonical nitrite oxidizing Nitrospira in extremely alkaline environments. Here, we studied the seasonal distribution and diversity, and the effect of short-term pH changes on comammox and canonical Nitrospira in sediments of two saline, highly alkaline lakes. We identified diverse canonical and comammox Nitrospira clade A-like phylotypes as the only detectable NOB during more than a year, suggesting their major importance for nitrification in these habitats. Gross nitrification rates measured in microcosm incubations were highest at pH 10 and considerably faster than reported for other natural, aquatic environments. Nitrification could be attributed to canonical and comammox Nitrospira and to Nitrososphaerales ammonia-oxidizing archaea. Furthermore, our data suggested that comammox Nitrospira contributed to ammonia oxidation at an extremely alkaline pH of 11. These results identify saline, highly alkaline lake sediments as environments of uniquely strong nitrification with novel comammox Nitrospira as key microbial players.


Assuntos
Lagos , Nitritos , Nitratos , Amônia , Nitrificação , Bactérias/genética , Archaea/genética , Concentração de Íons de Hidrogênio , Oxirredução , Filogenia
8.
New Phytol ; 238(5): 2210-2223, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36683444

RESUMO

The epiphytic orchid Caularthron bilamellatum sacrifices its water storage tissue for nutrients from the waste of ants lodging inside its hollow pseudobulb. Here, we investigate whether fungi are involved in the rapid translocation of nutrients. Uptake was analysed with a 15 N labelling experiment, subsequent isotope ratio mass spectrometry (IRMS) and secondary ion mass spectrometry (ToF-SIMS and NanoSIMS). We encountered two hyphae types: a thick melanized type assigned to 'black fungi' (Chaetothyriales, Cladosporiales, and Mycosphaerellales) in ant waste, and a thin endophytic type belonging to Hypocreales. In few cell layers, both hyphae types co-occurred. 15 N accumulation in both hyphae types was conspicuous, while for translocation to the vessels only Hypocreales were involved. There is evidence that the occurrence of the two hyphae types results in a synergism in terms of nutrient uptake. Our study provides the first evidence that a pseudobulb (=stem)-born endophytic network of Hypocreales is involved in the rapid translocation of nitrogen from insect-derived waste to the vegetative and reproductive tissue of the host orchid. For C. bilamellatum that has no contact with the soil, ant waste in the hollow pseudobulbs serves as equivalent to soil in terms of nutrient sources.


Assuntos
Formigas , Ascomicetos , Hypocreales , Orchidaceae , Animais , Nitrogênio/metabolismo , Fungos/metabolismo , Ascomicetos/metabolismo , Nutrientes
9.
New Phytol ; 240(2): 565-576, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37545200

RESUMO

Below and aboveground vegetation dynamics are crucial in understanding how climate warming may affect terrestrial ecosystem carbon cycling. In contrast to aboveground biomass, the response of belowground biomass to long-term warming has been poorly studied. Here, we characterized the impacts of decadal geothermal warming at two levels (on average +3.3°C and +7.9°C) on below and aboveground plant biomass stocks and production in a subarctic grassland. Soil warming did not change standing root biomass and even decreased fine root production and reduced aboveground biomass and production. Decadal soil warming also did not significantly alter the root-shoot ratio. The linear stepwise regression model suggested that following 10 yr of soil warming, temperature was no longer the direct driver of these responses, but losses of soil N were. Soil N losses, due to warming-induced decreases in organic matter and water retention capacity, were identified as key driver of the decreased above and belowground production. The reduction in fine root production was accompanied by thinner roots with increased specific root area. These results indicate that after a decade of soil warming, plant productivity in the studied subarctic grassland was affected by soil warming mainly by the reduction in soil N.


Assuntos
Ecossistema , Traqueófitas , Solo , Pradaria , Nitrogênio/análise , Mudança Climática , Biomassa , Plantas , Carbono
10.
Plant Cell Environ ; 46(2): 464-478, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36329607

RESUMO

Cold acclimation is a multigenic process by which many plant species increase their freezing tolerance. Stabilization of photosynthesis and carbohydrate metabolism plays a crucial role in cold acclimation. To study regulation of primary and secondary metabolism during cold acclimation of Arabidopsis thaliana, metabolic mutants with deficiencies in either starch or flavonoid metabolism were exposed to 4°C. Photosynthesis was determined together with amounts of carbohydrates, anthocyanins, organic acids and enzyme activities of the central carbohydrate metabolism. Starch deficiency was found to significantly delay soluble sugar accumulation during cold acclimation, while starch overaccumulation did not affect accumulation dynamics but resulted in lower total amounts of \sucrose and glucose. Anthocyanin amounts were lowered in both starch deficient and overaccumulating mutants. Vice versa, flavonoid deficiency did not result in a changed starch amount, which suggested a unidirectional signalling link between starch and flavonoid metabolism. Mathematical modelling of carbon metabolism indicated kinetics of sucrose biosynthesis to be limiting for carbon partitioning in leaf tissue during cold exposure. Together with cold-induced dynamics of citrate, fumarate and malate amounts, this provided evidence for a central role of sucrose phosphate synthase activity in carbon partitioning between biosynthetic and dissimilatory pathways which stabilizes photosynthesis and metabolism at low temperature.


Assuntos
Arabidopsis , Carbono , Carbono/metabolismo , Antocianinas/metabolismo , Aclimatação/fisiologia , Metabolismo dos Carboidratos , Arabidopsis/metabolismo , Temperatura Baixa , Plantas/metabolismo , Amido/metabolismo , Sacarose/metabolismo , Folhas de Planta/metabolismo
11.
BMC Biol ; 20(1): 135, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681192

RESUMO

BACKGROUND: Symbiotic ant-plant associations, in which ants live on plants, feed on plant-provided food, and protect host trees against threats, are ubiquitous across the tropics, with the Azteca-Cecropia associations being amongst the most widespread interactions in the Neotropics. Upon colonization of Cecropia's hollow internodes, Azteca queens form small patches with plant parenchyma, which are then used as waste piles when the colony grows. Patches-found in many ant-plant mutualisms-are present throughout the colony life cycle and may supplement larval food. Despite their initial nitrogen (N)-poor substrate, patches in Cecropia accommodate fungi, nematodes, and bacteria. In this study, we investigated the atmospheric N2 fixation as an N source in patches of early and established ant colonies. RESULTS: Via 15N2 tracer assays, N2 fixation was frequently detected in all investigated patch types formed by three Azteca ant species. Quantified fixation rates were similar in early and established ant colonies and higher than in various tropical habitats. Based on amplicon sequencing, the identified microbial functional guild-the diazotrophs-harboring and transcribing the dinitrogenase reductase (nifH) gene was highly diverse and heterogeneous across Azteca colonies. The community composition differed between early and established ant colonies and partly between the ant species. CONCLUSIONS: Our data show that N2 fixation can result in reasonable amounts of N in ant colonies, which might not only enable bacterial, fungal, and nematode growth in the patch ecosystems but according to our calculations can even support the growth of ant populations. The diverse and heterogeneous diazotrophic community implies a functional redundancy, which could provide the ant-plant-patch system with a higher resilience towards changing environmental conditions. Hence, we propose that N2 fixation represents a previously unknown potential to overcome N limitations in arboreal ant colonies.


Assuntos
Formigas , Cecropia , Animais , Ecossistema , Fixação de Nitrogênio , Plantas , Crescimento Demográfico , Simbiose , Árvores
12.
Molecules ; 28(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36838573

RESUMO

Aspartate transcarbamoylase (ATC) catalyzes the first committed step in pyrimidine de novo synthesis. As shown before, mutants with 80% reduced transcript and protein levels exhibit reduced levels of pyrimidine metabolites and thus nucleotide limitation and imbalance. Consequently, reduced photosynthetic capacity and growth, accompanied by massive transcriptional changes, were observed. Here, we show that nucleotide de novo synthesis was upregulated during cold acclimation of Arabidopsis thaliana (ecotype Columbia, Col-0) plants, but ATC knockdown mutants failed to acclimate to this condition as they did not accumulate neutral sugars and anthocyanins. A global transcriptome analysis revealed that most of the transcriptional changes observed in Col-0 plants upon cold exposure were also evident in ATC knockdown plants. However, several responses observed in cold-treated Col-0 plants could already be detected in knockdown plants when grown under standard conditions, suggesting that these mutants exhibited typical cold responses without prior cold stimulation. We believe that nucleotide signaling is involved in "cold-like priming" and "cold acclimation" in general. The observed transcript levels of genes involved in central carbon metabolism and respiration were an exception to these findings. These were upregulated in the cold but downregulated in warm-grown ATC mutants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ácido Aspártico/metabolismo , Nucleotídeos/metabolismo , Regulação para Baixo , Antocianinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Aclimatação/fisiologia , Pirimidinas/metabolismo , Temperatura Baixa , Regulação da Expressão Gênica de Plantas
13.
Plant J ; 106(1): 23-40, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33368770

RESUMO

Acclimation is the capacity to adapt to environmental changes within the lifetime of an individual. This ability allows plants to cope with the continuous variation in ambient conditions to which they are exposed as sessile organisms. Because environmental changes and extremes are becoming even more pronounced due to the current period of climate change, enhancing the efficacy of plant acclimation is a promising strategy for mitigating the consequences of global warming on crop yields. At the cellular level, the chloroplast plays a central role in many acclimation responses, acting both as a sensor of environmental change and as a target of cellular acclimation responses. In this Perspective article, we outline the activities of the Green Hub consortium funded by the German Science Foundation. The main aim of this research collaboration is to understand and strategically modify the cellular networks that mediate plant acclimation to adverse environments, employing Arabidopsis, tobacco (Nicotiana tabacum) and Chlamydomonas as model organisms. These efforts will contribute to 'smart breeding' methods designed to create crop plants with improved acclimation properties. To this end, the model oilseed crop Camelina sativa is being used to test modulators of acclimation for their potential to enhance crop yield under adverse environmental conditions. Here we highlight the current state of research on the role of gene expression, metabolism and signalling in acclimation, with a focus on chloroplast-related processes. In addition, further approaches to uncovering acclimation mechanisms derived from systems and computational biology, as well as adaptive laboratory evolution with photosynthetic microbes, are highlighted.


Assuntos
Folhas de Planta/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Camellia/genética , Camellia/metabolismo , Camellia/fisiologia , Chlamydomonas/genética , Chlamydomonas/metabolismo , Chlamydomonas/fisiologia , Folhas de Planta/genética , Biologia de Sistemas/métodos , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/fisiologia
14.
New Phytol ; 236(6): 2037-2043, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36110042

RESUMO

Due to their sessile nature, plants cannot escape adverse environmental conditions and evolved mechanisms to cope with sudden environmental changes. The reaction to variations in abiotic factors, also summarized as acclimation response, affects all layers of cellular functions and involves rapid modification of enzymatic activities, the metabolome, proteome and transcriptome on different timescales. One trait of plants acclimating to high light (HL) is the rapid transcriptional activation of the flavonoid biosynthesis (FB) pathway resulting in the accumulation of photoprotective and antioxidative flavonoids, such as flavonols and anthocyanins, in the leaf tissue. Although enormous progress has been made in identifying enzymes and transcriptional regulators of FB by forward and reverse genetic approaches in the past, the signals and signalling pathways permitting the conditional activation of FB in HL are still debated. With this Tansley Insight, we summarize the current knowledge on the proposed signals and downstream factors involved in regulating FB and will discuss their contribution to, particularly, HL-induced accumulation of anthocyanins.


Assuntos
Antocianinas , Regulação da Expressão Gênica de Plantas , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flavonoides/metabolismo , Transcriptoma , Plantas/metabolismo
15.
Glob Chang Biol ; 28(7): 2425-2441, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34908205

RESUMO

Depolymerization of high-molecular weight organic nitrogen (N) represents the major bottleneck of soil N cycling and yet is poorly understood compared to the subsequent inorganic N processes. Given the importance of organic N cycling and the rise of global change, we investigated the responses of soil protein depolymerization and microbial amino acid consumption to increased temperature, elevated atmospheric CO2 , and drought. The study was conducted in a global change facility in a managed montane grassland in Austria, where elevated CO2 (eCO2 ) and elevated temperature (eT) were stimulated for 4 years, and were combined with a drought event. Gross protein depolymerization and microbial amino acid consumption rates (alongside with gross organic N mineralization and nitrification) were measured using 15 N isotope pool dilution techniques. Whereas eCO2  showed no individual effect, eT had distinct effects which were modulated by season, with a negative effect of eT on soil organic N process rates in spring, neutral effects in summer, and positive effects in fall. We attribute this to a combination of changes in substrate availability and seasonal temperature changes. Drought led to a doubling of organic N process rates, which returned to rates found under ambient conditions within 3 months after rewetting. Notably, we observed a shift in the control of soil protein depolymerization, from plant substrate controls under continuous environmental change drivers (eT and eCO2 ) to controls via microbial turnover and soil organic N availability under the pulse disturbance (drought). To the best of our knowledge, this is the first study which analyzed the individual versus combined effects of multiple global change factors and of seasonality on soil organic N processes and thereby strongly contributes to our understanding of terrestrial N cycling in a future world.


Assuntos
Secas , Pradaria , Aminoácidos , Dióxido de Carbono/análise , Ecossistema , Nitrogênio/análise , Solo/química , Microbiologia do Solo
16.
Glob Chang Biol ; 28(17): 5007-5026, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35722720

RESUMO

The physical and chemical changes that accompany permafrost thaw directly influence the microbial communities that mediate the decomposition of formerly frozen organic matter, leading to uncertainty in permafrost-climate feedbacks. Although changes to microbial metabolism and community structure are documented following thaw, the generality of post-thaw assembly patterns across permafrost soils of the world remains uncertain, limiting our ability to predict biogeochemistry and microbial community responses to climate change. Based on our review of the Arctic microbiome, permafrost microbiology, and community ecology, we propose that Assembly Theory provides a framework to better understand thaw-mediated microbiome changes and the implications for community function and climate feedbacks. This framework posits that the prevalence of deterministic or stochastic processes indicates whether the community is well-suited to thrive in changing environmental conditions. We predict that on a short timescale and following high-disturbance thaw (e.g., thermokarst), stochasticity dominates post-thaw microbiome assembly, suggesting that functional predictions will be aided by detailed information about the microbiome. At a longer timescale and lower-intensity disturbance (e.g., active layer deepening), deterministic processes likely dominate, making environmental parameters sufficient for predicting function. We propose that the contribution of stochastic and deterministic processes to post-thaw microbiome assembly depends on the characteristics of the thaw disturbance, as well as characteristics of the microbial community, such as the ecological and phylogenetic breadth of functional guilds, their functional redundancy, and biotic interactions. These propagate across space and time, potentially providing a means for predicting the microbial forcing of greenhouse gas feedbacks to global climate change.


Assuntos
Microbiota , Pergelissolo , Regiões Árticas , Retroalimentação , Pergelissolo/química , Filogenia , Solo/química
17.
Surg Endosc ; 36(6): 4507-4517, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34708296

RESUMO

BACKGROUND: Endoscopic and laparoscopic electrosurgical devices (ED) are of great importance in modern medicine but can cause adverse events such as tissue injuries and burns from residual heat. While laparoscopic tools are well investigated, detailed insights about the temperature profile of endoscopic knives are lacking. Our aim is to investigate the temperature and the residual heat of laparoscopic and endoscopic monopolar instruments to increase the safety in handling ED. METHODS: An infrared camera was used to measure the temperature of laparoscopic and endoscopic instruments during energy application and to determine the cooling time to below 50 °C at a porcine stomach. Different power levels and cutting intervals were studied to investigate their impact on the temperature profile. RESULTS: During activation, the laparoscopic hook exceeded 120 °C regularly for an up to 10 mm shaft length. With regards to endoknives, only the Dual Tip Knife showed a shaft temperature of above 50 °C. The residual heat of the laparoscopic hook remained above 50 °C for at least 15 s after activation. Endoknives cooled to below 50 °C in 4 s. A higher power level and longer cutting duration significantly increased the shaft temperature and prolonged the cooling time (p < 0.001). CONCLUSION: Residual heat and maximum temperature during energy application depend strongly on the chosen effect and cutting duration. To avoid potential injuries, the user should not touch any tissue with the laparoscopic hook for at least 15 s and with the endoknives for at least 4 s after energy application. As the shaft also heats up to over 120 °C, the user should be careful to avoid tissue contact during activation with the shaft. These results should be strongly considered for safety reasons when handling monopolar ED.


Assuntos
Temperatura Alta , Laparoscopia , Animais , Dissecação , Eletrocirurgia , Humanos , Laparoscopia/métodos , Suínos , Temperatura
18.
Proc Natl Acad Sci U S A ; 116(17): 8515-8524, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30962365

RESUMO

The global atmospheric level of methane (CH4), the second most important greenhouse gas, is currently increasing by ∼10 million tons per year. Microbial oxidation in unsaturated soils is the only known biological process that removes CH4 from the atmosphere, but so far, bacteria that can grow on atmospheric CH4 have eluded all cultivation efforts. In this study, we have isolated a pure culture of a bacterium, strain MG08 that grows on air at atmospheric concentrations of CH4 [1.86 parts per million volume (p.p.m.v.)]. This organism, named Methylocapsa gorgona, is globally distributed in soils and closely related to uncultured members of the upland soil cluster α. CH4 oxidation experiments and 13C-single cell isotope analyses demonstrated that it oxidizes atmospheric CH4 aerobically and assimilates carbon from both CH4 and CO2 Its estimated specific affinity for CH4 (a0s) is the highest for any cultivated methanotroph. However, growth on ambient air was also confirmed for Methylocapsa acidiphila and Methylocapsa aurea, close relatives with a lower specific affinity for CH4, suggesting that the ability to utilize atmospheric CH4 for growth is more widespread than previously believed. The closed genome of M. gorgona MG08 encodes a single particulate methane monooxygenase, the serine cycle for assimilation of carbon from CH4 and CO2, and CO2 fixation via the recently postulated reductive glycine pathway. It also fixes dinitrogen and expresses the genes for a high-affinity hydrogenase and carbon monoxide dehydrogenase, suggesting that atmospheric CH4 oxidizers harvest additional energy from oxidation of the atmospheric trace gases carbon monoxide (0.2 p.p.m.v.) and hydrogen (0.5 p.p.m.v.).


Assuntos
Beijerinckiaceae , Gases de Efeito Estufa/metabolismo , Metano/metabolismo , Proteínas de Bactérias/metabolismo , Beijerinckiaceae/classificação , Beijerinckiaceae/enzimologia , Beijerinckiaceae/genética , Beijerinckiaceae/fisiologia , Oxirredução , Oxigenases/metabolismo , Microbiologia do Solo
19.
New Phytol ; 232(6): 2457-2474, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34196001

RESUMO

Ectomycorrhizal plants trade plant-assimilated carbon for soil nutrients with their fungal partners. The underlying mechanisms, however, are not fully understood. Here we investigate the exchange of carbon for nitrogen in the ectomycorrhizal symbiosis of Fagus sylvatica across different spatial scales from the root system to the cellular level. We provided 15 N-labelled nitrogen to mycorrhizal hyphae associated with one half of the root system of young beech trees, while exposing plants to a 13 CO2 atmosphere. We analysed the short-term distribution of 13 C and 15 N in the root system with isotope-ratio mass spectrometry, and at the cellular scale within a mycorrhizal root tip with nanoscale secondary ion mass spectrometry (NanoSIMS). At the root system scale, plants did not allocate more 13 C to root parts that received more 15 N. Nanoscale secondary ion mass spectrometry imaging, however, revealed a highly heterogenous, and spatially significantly correlated distribution of 13 C and 15 N at the cellular scale. Our results indicate that, on a coarse scale, plants do not allocate a larger proportion of photoassimilated C to root parts associated with N-delivering ectomycorrhizal fungi. Within the ectomycorrhizal tissue, however, recently plant-assimilated C and fungus-delivered N were spatially strongly coupled. Here, NanoSIMS visualisation provides an initial insight into the regulation of ectomycorrhizal C and N exchange at the microscale.


Assuntos
Fagus , Micorrizas , Carbono , Nitrogênio , Raízes de Plantas
20.
Glob Chang Biol ; 27(14): 3230-3243, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33811716

RESUMO

Photosynthesis and soil respiration represent the two largest fluxes of CO2 in terrestrial ecosystems and are tightly linked through belowground carbon (C) allocation. Drought has been suggested to impact the allocation of recently assimilated C to soil respiration; however, it is largely unknown how drought effects are altered by a future warmer climate under elevated atmospheric CO2 (eT_eCO2 ). In a multifactor experiment on managed C3 grassland, we studied the individual and interactive effects of drought and eT_eCO2 (drought, eT_eCO2 , drought × eT_eCO2 ) on ecosystem C dynamics. We performed two in situ 13 CO2 pulse-labeling campaigns to trace the fate of recent C during peak drought and recovery. eT_eCO2 increased soil respiration and the fraction of recently assimilated C in soil respiration. During drought, plant C uptake was reduced by c. 50% in both ambient and eT_eCO2 conditions. Soil respiration and the amount and proportion of 13 C respired from soil were reduced (by 32%, 70% and 30%, respectively), the effect being more pronounced under eT_eCO2 (50%, 84%, 70%). Under drought, the diel coupling of photosynthesis and SR persisted only in the eT_eCO2 scenario, likely caused by dynamic shifts in the use of freshly assimilated C between storage and respiration. Drought did not affect the fraction of recent C remaining in plant biomass under ambient and eT_eCO2 , but reduced the small fraction remaining in soil under eT_eCO2 . After rewetting, C uptake and the proportion of recent C in soil respiration recovered more rapidly under eT_eCO2 compared to ambient conditions. Overall, our findings suggest that in a warmer climate under elevated CO2 drought effects on the fate of recent C will be amplified and the coupling of photosynthesis and soil respiration will be sustained. To predict the future dynamics of terrestrial C cycling, such interactive effects of multiple global change factors should be considered.


Assuntos
Carbono , Solo , Dióxido de Carbono/análise , Secas , Ecossistema , Pradaria , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA