Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
New Phytol ; 208(2): 507-18, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25967461

RESUMO

Plant-invading microbes betray their presence to a plant by exposure of antigenic molecules such as small, secreted proteins called 'effectors'. In Fusarium oxysporum f. sp. lycopersici (Fol) we identified a pair of effector gene candidates, AVR2-SIX5, whose expression is controlled by a shared promoter. The pathogenicity of AVR2 and SIX5 Fol knockouts was assessed on susceptible and resistant tomato (Solanum lycopersicum) plants carrying I-2. The I-2 NB-LRR protein confers resistance to Fol races carrying AVR2. Like Avr2, Six5 was found to be required for full virulence on susceptible plants. Unexpectedly, each knockout could breach I-2-mediated disease resistance. So whereas Avr2 is sufficient to induce I-2-mediated cell death, Avr2 and Six5 are both required for resistance. Avr2 and Six5 interact in yeast two-hybrid assays as well as in planta. Six5 and Avr2 accumulate in xylem sap of plants infected with the reciprocal knockouts, showing that lack of I-2 activation is not due to a lack of Avr2 accumulation in the SIX5 mutant. The effector repertoire of a pathogen determines its host specificity and its ability to manipulate plant immunity. Our findings challenge an oversimplified interpretation of the gene-for-gene model by showing requirement of two fungal genes for immunity conferred by one resistance gene.


Assuntos
Proteínas Fúngicas/genética , Genes Fúngicos , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Morte Celular , Resistência à Doença/imunologia , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/patogenicidade , Técnicas de Inativação de Genes , Solanum lycopersicum/citologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Ligação Proteica , Nicotiana/citologia , Técnicas do Sistema de Duplo-Híbrido , Xilema/metabolismo
2.
Mol Plant Microbe Interact ; 25(8): 1045-57, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22512381

RESUMO

Plant resistance (R) proteins mediate race-specific immunity and initiate host defenses that are often accompanied by a localized cell-death response. Most R proteins belong to the nucleotide binding-leucine-rich repeat (NB-LRR) protein family, as they carry a central NB-ARC domain fused to an LRR domain. The coiled-coil (CC) domain at the N terminus of some solanaceous NB-LRR proteins is extended with a solanaceae domain (SD). Tomato Mi-1.2, which confers resistance against nematodes, white flies, psyllids, and aphids, encodes a typical SD-CNL protein. Here, we analyzed the role of the extended N terminus for Mi-1.2 activation. Removal of the first part of the N terminus (Nt1) induced Mi-1.2-mediated cell death that could be suppressed by overexpression of the second half of the N-terminal region. Yet, autoactivating NB-ARC-LRR mutants require in trans coexpression of the N-terminal region to induce cell death, indicating that the N terminus functions both as a negative and as a positive regulator. Based on secondary structure predictions, we could link both activities to three distinct subdomains, a typical CC domain and two novel, structurally-conserved helical subdomains called SD1 and SD2. A negative regulatory function could be assigned to the SD1, whereas SD2 and the CC together function as positive regulators of Mi-1.2-mediated cell death.


Assuntos
Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum lycopersicum/fisiologia , Animais , Afídeos , Sequência de Bases , Morte Celular , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/citologia , Dados de Sequência Molecular , Mutação , Nematoides , Proteínas de Plantas/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Nicotiana/genética
3.
J Exp Bot ; 63(14): 5121-35, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22865913

RESUMO

Polyphenol oxidases (PPOs) are copper-binding enzymes of the plant secondary metabolism that oxidize polyphenols to quinones. Although PPOs are nearly ubiquitous in seed plants, knowledge on their evolution and function in other plant groups is missing. This study reports on the PPO gene family in the moss Physcomitrella patens (Hedw.) B.S.G. asan example for an early divergent plant. The P. patens PPO multigene family comprises 13 paralogues. Phylogenetic analyses suggest that plant PPOs evolved with the colonization of land and that PPO duplications within the monophyletic P. patens paralogue clade occurred after the separation of the moss and seed plant lineages. PPO functionality was demonstrated for recombinant PPO6. P. patens was analysed for phenolic compounds and six substances were detected intracellularly by LC-MS analysis: 4-hydroxybenzoic acid, p-cumaric acid, protocatechuic acid, salicylic acid, caffeic acid, and an ester of caffeic acid. Targeted PPO1 knockout (d|ppo1) plants were generated and plants lacking PPO1 exhibited only ~30% of the wild-type PPO activity in the culture medium, thus suggesting extracellular localization of PPO1, which is in contrast to the mostly plastidic PPO localization in seed plants. Further, d|ppo1 lines formed significantly more gametophores with a reduced areal plant size, which could be related to an increase of endogenously produced cytokinins and indicates an impact of PPO1 on plant development. d|ppo1 plants were less tolerant towards applied 4-methylcatechol compared to the wild type, which suggests a role of extracellular PPO1 in establishing appropriate conditions by the removal of inhibitory extracellular phenolic compounds.


Assuntos
Briófitas/enzimologia , Briófitas/crescimento & desenvolvimento , Catecol Oxidase/genética , Catecol Oxidase/metabolismo , Citocininas/metabolismo , Filogenia , Briófitas/química , Briófitas/genética , Catecol Oxidase/química , Cromatografia Líquida , Técnicas de Inativação de Genes , Família Multigênica , Espectrometria de Massas em Tandem
4.
Biomed Res Int ; 2019: 5030349, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275973

RESUMO

INTRODUCTION: Although serum tumor markers beta human chorionic gonadotropin (bHCG), alpha-fetoprotein (AFP), and lactate dehydrogenase (LDH) are well-established tools for the management of testicular germ cell tumours (GCTs), there are only few data from contemporary cohorts of primary GCT patients regarding these biomarkers. Our aim was to evaluate marker elevations in testicular GCTs and to document their associations with various clinical characteristics. PATIENTS AND METHODS: A total of 422 consecutive patients with GCTs were retrospectively analysed regarding serum levels of bHCG, AFP, and LDH during the course of treatment. Additionally, the following characteristics were recorded: histology, age, laterality, clinical stage (CS), pT-stage, and tumour size. Marker elevations were first tabulated in dichotomized way (elevated: yes/no) in various subgroups and second as continuous measured serum values. Descriptive statistical methods were employed to look for differences among subgroups and for associations of elevations with clinical parameters. RESULTS: In all GCT patients, the frequencies of elevated levels of bHCG, AFP, LDH, and bHCG or AFP were 37.9%, 25.6%, 32.9%, and 47.6%; in pure seminomas 28%, 2.8%, 29.1%, and 30.3%; and in nonseminoma 53.0%, 60.1%, 38.7%, and 73.8%. Significant associations were noted with pT-stages >pT1, clinical stages >CS1, tumour size, and younger age. Frequencies of marker elevations dropped significantly after treatment, but LDH levels remained elevated in 30.5%-34.1%. Relapsing patients (n=27) had elevated levels of bHCG, AFP, and LDH in 25.9%, 22.2%, and 29.6%, respectively, thirteen of whom with a changed marker pattern. CONCLUSIONS: The classical GCT-biomarkers correlate with treatment success. Clinical utility is limited due to proportions of < 50% of patients with elevated levels and the low specificity of LDH. The elevation rates are significantly associated with histology, clinical and pT-stages, tumour size, and younger age. Individual marker patterns may change upon relapse. Clinically, ideal biomarkers are yet to be found.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias Embrionárias de Células Germinativas/sangue , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Neoplasias Testiculares/sangue , Neoplasias Testiculares/tratamento farmacológico , Fatores Etários , Gonadotropina Coriônica/sangue , Estudos de Coortes , Humanos , Masculino , Metástase Neoplásica , Recidiva Local de Neoplasia/sangue , Recidiva Local de Neoplasia/patologia , Estadiamento de Neoplasias , Neoplasias Embrionárias de Células Germinativas/diagnóstico , Neoplasias Embrionárias de Células Germinativas/patologia , Seminoma/sangue , Seminoma/diagnóstico , Neoplasias Testiculares/diagnóstico , Neoplasias Testiculares/patologia , Resultado do Tratamento , Carga Tumoral , alfa-Fetoproteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA