Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 158(19)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37191215

RESUMO

A large number of force fields have been proposed for describing the behavior of liquid water within classical atomistic simulations, particularly molecular dynamics. In the past two decades, models that incorporate molecular polarizability and even charge transfer have become more prevalent, in attempts to develop more accurate descriptions. These are frequently parameterized to reproduce the measured thermodynamics, phase behavior, and structure of water. On the other hand, the dynamics of water is rarely considered in the construction of these models, despite its importance in their ultimate applications. In this paper, we explore the structure and dynamics of polarizable and charge-transfer water models, with a focus on timescales that directly or indirectly relate to hydrogen bond (H-bond) making and breaking. Moreover, we use the recently developed fluctuation theory for dynamics to determine the temperature dependence of these properties to shed light on the driving forces. This approach provides key insight into the timescale activation energies through a rigorous decomposition into contributions from the different interactions, including polarization and charge transfer. The results show that charge transfer effects have a negligible effect on the activation energies. Furthermore, the same tension between electrostatic and van der Waals interactions that is found in fixed-charge water models also governs the behavior of polarizable models. The models are found to involve significant energy-entropy compensation, pointing to the importance of developing water models that accurately describe the temperature dependence of water structure and dynamics.

2.
J Comput Chem ; 43(18): 1229-1236, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35543334

RESUMO

Polypeptoids differ from polypeptides in that the amide bond can more frequently adopt both cis and trans conformations. The transition between the two conformations requires overcoming a large energy barrier, making it difficult for conventional molecular simulations to adequately visit the cis and trans structures. A replica-exchange method is presented that allows for easy rotations of the amide bond and also an efficient linking to a high temperature replica. The method allows for just three replicas (one at the temperature and Hamiltonian of interest, a second high temperature replica with a biased dihedral potential, and a third connecting them) to overcome the amide bond sampling problem and also enhance sampling for other coordinates. The results indicate that for short peptoid oligomers, the conformations can range from all cis to all trans with an average cis/trans ratio that depends on side chain and potential model.


Assuntos
Simulação de Dinâmica Molecular , Peptoides , Amidas , Conformação Molecular , Peptídeos/química , Peptoides/química
3.
Biophys J ; 120(9): 1835-1845, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33705762

RESUMO

Channelrhodopsins (ChR) are light-sensitive cation channels used in optogenetics, a technique that applies light to control cells (e.g., neurons) that have been modified genetically to express those channels. Although mutations are known to affect pore kinetics, little is known about how mutations induce changes at the molecular scale. To address this issue, we first measured channel opening and closing rates of a ChR chimera (C1C2) and selected variants (N297D, N297V, and V125L). Then, we used atomistic simulations to correlate those rates with changes in pore structure, hydration, and chemical interactions among key gating residues of C1C2 in both closed and open states. Overall, the experimental results show that C1C2 and its mutants do not behave like ChR2 or its analogous variants, except V125L, making C1C2 a unique channel. Our atomistic simulations confirmed that opening of the channel and initial hydration of the gating regions between helices I, II, III, and VII of the channel occurs with 1) the presence of 13-cis retinal; 2) deprotonation of a glutamic acid gating residue, E129; and 3) subsequent weakening of the central gate hydrogen bond between the same glutamic acid E129 and asparagine N297 in the central region of the pore. Also, an aspartate (D292) is the unambiguous primary proton acceptor for the retinal Schiff base in the hydrated channel.


Assuntos
Prótons , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Ligação de Hidrogênio , Cinética , Conformação Proteica
4.
J Chem Inf Model ; 61(2): 810-818, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33496583

RESUMO

An implementation of the replica exchange with dynamical scaling (REDS) method in the commonly used molecular dynamics program GROMACS is presented. REDS is a replica exchange method that requires fewer replicas than conventional replica exchange while still providing data over a range of temperatures and can be used in either constant volume or constant pressure ensembles. Details for running REDS simulations are given, and an application to the human islet amyloid polypeptide (hIAPP) 11-25 fragment shows that the model efficiently samples conformational space.


Assuntos
Simulação de Dinâmica Molecular , Humanos , Temperatura
5.
Phys Chem Chem Phys ; 22(2): 467-477, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31782440

RESUMO

Both experimental and computational evidence exist that Coulomb interactions between the molecular ions in ionic liquids are significantly damped by almost a factor of two. This circumstance is often used to justify charge scaling. However, as polarizable MD simulations are also capable of explaining the reduced Coulomb interaction between the ionic liquid ions [C. Schröder, Phys. Chem. Chem. Phys., 2012, 14, 3089], the question arises, if the reduced Coulomb interactions are due to a charge transfer between the molecules or due to an overall effect of induced dipolar interactions. We aim to contribute to this discussion using polarizable MD simulations of 1-ethyl-3-methylimidazolium tetrafluoroborate including a new model for treating charge transfer between the cations and anions. The diffusion time scales are not changed significantly with the inclusion of charge transfer, but individual ions show a strong dependence on charge transfer amounts. Ions which have transferred more charge, and have a charge with a smaller magnitude, diffuse slower. The charge transfer model shows a slightly larger conductivity, despite having smaller charges, and shows a much stronger contribution of the anions to the conductivity. With charge transfer, the anions become the dominant species for charge transport, while the polarizable models show a roughly equal contribution from the anions and the cations.

6.
J Chem Phys ; 150(1): 014502, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30621426

RESUMO

Hydrogen bonds are the key interaction that establishes the liquid and solvent properties of water. Nevertheless, it is possible to construct an accurate molecular model of water which does not include hydrogens or any orientational interactions. Using this model, we calculate the structural and thermodynamic properties for the hydration of methane and ethane. The addition of the hydrophobic solute leads to changes in structure, as can be seen in slightly enhanced tetrahedral geometries and slightly reduced Voronoi volumes of water near the solute. The entropy of hydration from the model is about half the experimental value, suggesting that what is left out of the model-the orientational or hydrogen response-contributes to about half the entropy. For the hydrophobic association of two methane molecules in water, the hydrogen degrees of freedom do not seem to play an important role and the entropy of association is similar to all-atom models.

7.
Phys Chem Chem Phys ; 20(36): 23386-23396, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30178791

RESUMO

In this study, a coarse-grained (CG) model for N,N-dimethylacetamide (DMA), which represents the polypeptoid backbone, is developed as a step towards establishing a CG model of the complex polypeptoid system. Polypeptoids or poly N-substituted glycines are a type of peptidomimetic polymers that are highly tunable, and hence an ideal model system to study self-assembly as a function of chemical groups in aqueous soft matter systems. The DMA CG model is parameterized to reproduce the structural properties of DMA liquid as well as a dilute aqueous solution of DMA using a reference all atom model, namely the OPLS-AA force-field. The intermolecular forces are represented by the Stillinger-Weber potential, that consists of both two- and three-body terms that are very short-ranged. The model is validated on thermodynamic properties of liquid and aqueous DMA, as well as the vapor-liquid interface of liquid DMA and the structure of a concentrated aqueous solution of DMA in water as well as a simple peptoid in water. Without long-ranged interactions and the absence of interaction sites on hydrogen atoms, the CG DMA model is an order of magnitude faster than the higher resolution all-atom (AA) model.


Assuntos
Acetamidas/química , Peptoides/química , Polímeros/química , Modelos Moleculares , Estrutura Molecular
8.
J Chem Phys ; 148(22): 222803, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29907071

RESUMO

The diffusion rates for water molecules in salt solutions depend on the identity of the ions, as well as their concentration. Among the alkali metal ions, cesium and potassium increase and sodium strongly decreases the diffusion constant of water. The origin of the difference can be understood by examining the simulation results using different potential models. In this work, aqueous solutions of salts are simulated with a variety of models. Commonly used non-polarizable models, which otherwise reproduce many experimental properties, do not capture the trend in the diffusion constant, while models which include polarization and/or charge transfer interactions do. For the non-polarizable models, the diffusion constant decreases too strongly with salt concentration. The changes in the water diffusion constant with increasing salt concentration match the diffusion constant of the ion. The ion diffusion constant is dependent on the residence time for water in the ion solvation shell. The non-polarizable models over-estimate the residence time, relative to the translational diffusion constant and so tend to under-estimate the ion and water diffusion constants.

9.
Biophys J ; 112(5): 943-952, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28297653

RESUMO

Channelrhodopsins (ChR1 and ChR2) are light-activated ion channels that enable photomobility of microalgae from the genus Chlamydomonas. Despite common use of ChR2 in optogenetics for selective control and monitoring of individual neurons in living tissue, the protein structures remain unresolved. Instead, a crystal structure of the ChR chimera (C1C2), an engineered combination of helices I-V from ChR1, without its C-terminus, and helices VI-VII from ChR2, is used as a template for ChR2 structure prediction. Surprisingly few studies have focused in detail on the chimera. Here, we present atomistic molecular dynamics studies of the closed-state, non-conducting C1C2 structure and protonation states. A new and comprehensive characterization of interactions in the vicinity of the gating region of the pore, namely between residues E90, E123, D253, N258, and the protonated Schiff base (SBH), as well as nearby residues K93, T127, and C128, indicates that the equilibrated C1C2 structure with both E123 and D253 deprotonated closely resembles the available crystal structure. In agreement with experimental studies on C1C2, no direct or water-mediated hydrogen bonding between an aspartate and a cysteine (D156-O…S-C128) that would define a direct-current gate in C1C2 was observed in our simulations. Finally, we show that a single hydrogen bond between a glutamic acid (E90) and an asparagine (N258) residue suffices to keep the gate of C1C2 closed and to disable free water and ion passage through the putative pore, in contrast to the double bond proposed earlier for ChR2. We anticipate that this work will provide context for studies of both the gating process and water and ion transport in C1C2, and will spark interest in further experimental studies on the chimera.


Assuntos
Chlamydomonas , Simulação de Dinâmica Molecular , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Rodopsina/química , Rodopsina/metabolismo , Bicamadas Lipídicas/metabolismo , Ligação Proteica , Conformação Proteica , Retinaldeído/metabolismo
10.
Phys Chem Chem Phys ; 19(22): 14388-14400, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28429009

RESUMO

Aggregation behavior of cyclic polypeptoids bearing zwitterionic end-groups in methanol has been studied using a combination of experimental and simulation techniques. The data from SANS and cryo-TEM indicate that the solution contains small clusters of these cyclic polypeptoids, ranging from a single polypeptoid chain to small oligomers, while the linear counterpart shows no cluster formation. Atomistic molecular dynamics simulations reveal that the driving force for this clustering behavior is due to the interplay between the effective repulsion due to the solvation of the dipoles formed by the charged end-groups in each polypeptoid chain and the attractive forces due to dipole-dipole interactions and the solvophobic effect.

11.
J Am Chem Soc ; 138(1): 48-51, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26702712

RESUMO

Using a combination of isothermal titration calorimetry and quantum and molecular dynamics calculations, we demonstrate that relatively soft anions have an affinity for hydrophobic concavity. The results are consistent with the anions remaining partially hydrated upon binding, and suggest a novel strategy for anion recognition.


Assuntos
Ânions/química , Calorimetria/métodos , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular
12.
J Comput Chem ; 37(22): 2060-6, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27296874

RESUMO

The transfer of small amounts of charge between neighboring particles can be a significant part of interactions among particles. A model is developed for treating charge transfer (CT) combined with the Drude model for polarizability to create an efficient model for liquid water which includes both CT and polarizability. The model is shown to be accurate for a variety of liquid properties, including the density as a function of temperature and the dielectric constant. A new model for water with CT and polarization is developed and applied to the liquid. The inclusion of CT increases the accuracy of many properties, like the density as a function of temperature, indicating the importance of charge redistribution as induced by other particles. © 2016 Wiley Periodicals, Inc.

13.
J Chem Phys ; 145(23): 234906, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-28010101

RESUMO

Polyacidic polymers can change structure over a narrow range of pH in a competition between the hydrophobic effect, which favors a compact state, and electrostatic repulsion, which favors an extended state. Constant pH molecular dynamics computer simulations of poly(methacrylic acid) reveal that there are two types of structural changes, one local and one global, which make up the overall response. The local structural response depends on the tacticity of the polymer and leads to different cooperative effects for polymers with different stereochemistries, demonstrating both positive and negative cooperativities.

14.
Phys Chem Chem Phys ; 17(18): 12247-58, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25893227

RESUMO

Tannins act as antioxidants, anticarcinogens, cardio-protectants, anti-inflammatory and anti-microbial agents and bind to salivary peptides by hydrophilic and hydrophobic mechanisms. Electrospray Ionization Mass Spectrometry (ESI-MS) has been used to assess both hydrophilic and hydrophobic components of noncovalent binding in protein complexes. In the present study, direct infusion Electrospray-Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (ES-FTICR MS) is used to assess relative binding affinities of procyanidin tannin stereoisomers for salivary peptides arising from aqueous solutions. The condensed tannins procyanidin B1, B2, B3, and B4 demonstrate significantly different binding affinities for the salivary peptide Histatin 5. Rigid docking combined with molecular dynamics optimization is used to investigate procyanidin-Histatin 5 binding mechanisms and as a basis to rationalize trends found in the corresponding ES-FTICR MS experiments. The relative binding affinities of the four procyanidin rotamers are different in the gas and liquid phases. The simulation results indicate that many of the same contact points are made in both phases, but there is a increase in strong electrostatic interactions and an decrease in π-π contacts upon transfer from the liquid to the gas phase. The simulations reveal that the tannin interactions can make close contacts with a variety of amino acid residues on the peptide.


Assuntos
Antioxidantes/farmacologia , Biflavonoides/farmacologia , Catequina/farmacologia , Histatinas/metabolismo , Proantocianidinas/farmacologia , Sequência de Aminoácidos , Antioxidantes/química , Biflavonoides/química , Catequina/química , Histatinas/química , Humanos , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Proantocianidinas/química , Saliva/química , Saliva/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
15.
J Chem Phys ; 143(4): 044702, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26233152

RESUMO

The role of the solvated excess proton and hydroxide ions in interfacial properties is an interesting scientific question with applications in a variety of aqueous behaviors. The role that charge transfer (CT) plays in interfacial behavior is also an unsettled question. Quantum calculations are carried out on clusters of water with an excess proton or a missing proton (hydroxide) to determine their CT. The quantum results are applied to analysis of multi-state empirical valence bond trajectories. The polyatomic nature of the solvated excess proton and hydroxide ion results in directionally dependent CT, depending on whether a water molecule is a hydrogen bond donor or acceptor in relation to the ion. With polyatomic molecules, CT also depends on the intramolecular bond distances in addition to intermolecular distances. The hydrated proton and hydroxide affect water's liquid/vapor interface in a manner similar to monatomic ions, in that they induce a hydrogen-bonding imbalance at the surface, which results in charged surface waters. This hydrogen bond imbalance, and thus the charged waters at the surface, persists until the ion is at least 10 Å away from the interface.

16.
J Chem Phys ; 140(18): 184703, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24832295

RESUMO

Charge transfer (CT), the movement of small amounts of electron density between non-bonded pairs, has been suggested as a driving force for a variety of physical processes. Herein, we examine the effect of CT on ion adsorption to the water liquid-vapor interface. Using a CT force field for molecular dynamics, we construct a potential of mean force (PMF) for Na(+), K(+), Cl(-), and I(-). The PMFs were produced with respect to an average interface and an instantaneous interface. An analysis of the PMF relative to the instantaneous surface reveals that the area in which the anions experience a free energy minimum is quite narrow, and the cations feel a steeply repulsive free energy near the interface. CT is seen to have only minor effects on the overall free energy profiles. However, the long-ranged effects of ions are highlighted by the CT model. Due to CT, the water molecules at the surface become charged, even when the ion is over 15 Å away from the surface.

17.
J Chem Theory Comput ; 20(7): 2812-2819, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38538531

RESUMO

Computer simulation methods can aid in the rational design of drugs aimed at a specific target, typically a protein. The affinity of a drug for its target is given by the free energy of binding. Binding can be further characterized by the enthalpy and entropy changes in the process. Methods exist to determine exact free energies, enthalpies, and entropies that are dependent only on the quality of the potential model and adequate sampling of conformational degrees of freedom. Entropy and enthalpy are roughly an order of magnitude more difficult to calculate than the free energy. This project combines a replica exchange method for enhanced sampling, designed to be efficient for protein-sized systems, with free energy calculations. This approach, replica exchange with dynamical scaling (REDS), uses two conventional simulations at different temperatures so that the entropy can be found from the temperature dependence of the free energy. A third replica is placed between them, with a modified Hamiltonian that allows it to span the temperature range of the conventional replicas. REDS provides temperature-dependent data and aids in sampling. It is applied to the bromodomain-containing protein 4 (BRD4) system. We find that for the force fields used, the free energies are accurate but the entropies and enthalpies are not, with the entropic contribution being too positive. Reproducing the entropy and enthalpy of binding appears to be a more stringent test of the force fields than reproducing the free energy.


Assuntos
Proteínas Nucleares , Fatores de Transcrição , Entropia , Simulação por Computador , Termodinâmica , Ligação Proteica , Simulação de Dinâmica Molecular
18.
J Chem Phys ; 138(11): 114708, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23534654

RESUMO

Propylene carbonate (PC) wets graphite with a contact angle of 31° at ambient conditions. Molecular dynamics simulations agree with this contact angle after 40% reduction of the strength of graphite-C atom Lennard-Jones interactions with the solvent, relative to the models used initially. A simulated nano-scale PC droplet on graphite displays a pronounced layering tendency and an Aztex pyramid structure for the droplet. Extrapolation of the computed tensions of PC liquid-vapor interface estimates the critical temperature of PC accurately to about 3%. PC molecules lie flat on the PC liquid-vapor surface and tend to project the propyl carbon toward the vapor phase. For close PC neighbors in liquid PC, an important packing motif stacks carbonate planes with the outer oxygen of one molecule snuggled into the positively charged propyl end of another molecule so that neighboring molecule dipole moments are approximately antiparallel. The calculated thermal expansion coefficient and the dielectric constants for liquid PC agree well with experiment. The distribution of PC molecule binding energies is closely Gaussian. Evaluation of the density of the coexisting vapor then permits estimation of the packing contribution to the PC chemical potential and that contribution is about two thirds of the magnitude of the contributions due to attractive interactions, with opposite sign.

19.
J Phys Chem B ; 127(12): 2872-2878, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36926948

RESUMO

Polypeptoids are N-substituted glycine polymers, which differ from peptides in the placement of the side chain on the amide nitrogen rather than the Cα carbon. A peptoid with a chiral side chain containing both an aromatic group and carboxylic acid has a structure that responds to pH changes. All-atom molecular dynamics simulations using a force field specifically tuned for peptoids were carried out with an advanced sampling method for the peptoid (S)-N-(1-carboxy-2-phenylethyl)glycine in the high and low pH limits. The simulations show that the structure changes from mostly cis amide bonds at low pH to mostly trans bonds at high pH. The structural changes are driven by side chain-backbone hydrogen bonds at low pH and side chain repulsions and increased water contact at high pH.

20.
J Chem Phys ; 137(4): 044511, 2012 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-22852635

RESUMO

Ab initio-based charge partitioning of ionic systems results in ions with non-integer charges. This charge-transfer (CT) effect alters both short- and long-range interactions. Until recently, the effects of CT have been mostly neglected in molecular dynamics (MD) simulations. The method presented in this paper for including charge transfer between ions and water is consistent with ab initio charge partitioning and does not add significant time to the simulation. The ions of sodium, potassium, and chloride are parameterized to reproduce dimer properties and aqueous structures. The average charges of the ions from MD simulations (0.900, 0.919, and -0.775 for Na(+), K(+), and Cl(-), respectively) are consistent with quantum calculations. The hydration free energies calculated for these ions are in agreement with experimental estimates, which shows that the interactions are described accurately. The ions also have diffusion constants in good agreement with experiment. Inclusion of CT results in interesting properties for the waters in the first solvation shell of the ions. For all ions studied, the first shell waters acquire a partial negative charge, due to the difference between water-water and water-ion charge-transfer amounts. CT also reduces asymmetry in the solvation shell of the chloride anion, which could have important consequences for the behavior of chloride near the air-water interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA