Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Stem Cells ; 39(12): 1733-1750, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34423894

RESUMO

Skin integrity requires constant maintenance of a quiescent, yet responsive, population of stem cells. While interfollicular epidermal progenitors control normal homeostasis, hair follicle stem cells residing within the bulge provide regenerative potential during hair cycle and in response to wounding. The aryl hydrocarbon receptor (AhR) modulates cell plasticity and differentiation and its overactivation results in severe skin lesions in humans. However, its physiological role in skin homeostasis and hair growth is unknown. Reconstitution assays grafting primary keratinocytes and dermal fibroblasts into nude mice and 3-D epidermal equivalents revealed a positive role for AhR in skin regeneration, epidermal differentiation, and stem cell maintenance. Furthermore, lack of receptor expression in AhR-/- mice delayed morphogenesis and impaired hair regrowth with a phenotype closely correlating with a reduction in suprabasal bulge stem cells (α6low CD34+ ). Moreover, RNA-microarray and RT-qPCR analyses of fluorescence-activated cell sorting (FACS)-isolated bulge stem cells revealed that AhR depletion impaired transcriptional signatures typical of both epidermal progenitors and bulge stem cells but upregulated differentiation markers likely compromising their undifferentiated phenotype. Altogether, our findings support that AhR controls skin regeneration and homeostasis by ensuring epidermal stem cell identity and highlights this receptor as potential target for the treatment of cutaneous pathologies.


Assuntos
Folículo Piloso , Receptores de Hidrocarboneto Arílico , Células-Tronco , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Epiderme , Homeostase , Camundongos , Camundongos Nus , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Células-Tronco/citologia
2.
Exp Eye Res ; 190: 107869, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31705900

RESUMO

The bird retina offers an excellent model to investigate the mechanisms that coordinate the morphogenesis, histogenesis, and differentiation of neuron and glial cells. Although these developmental features have been intensively studied in the chicken (Gallus gallus, Linnaeus 1758), a precocial bird species, little is known about retinogenesis in altricial birds. The purpose of this study was to examine the differentiation of retinal cells in the altricial zebra finch (Taeniopygia guttata, Vieillot, 1817) and compare the results with those from previous studies in G. gallus. By using immunohistochemical techniques, the first differentiated TUJ1-/Isl1-positive neuroblasts were detected in the vitreal surface of the neuroblastic layer at later incubation times in T. guttata than in G. gallus (108 h vs 55 h). The immunoreactivity of these early differentiation markers coincided temporo-spatially with the appearance of the first PCNA-negative nuclei. Furthermore, the first visinin-positive photoreceptors (132 h vs 120 h) and the first Prox-1-immunoreactive neuroblasts (embryonic day 7.25 (E7.25) vs E6.5) were also detected at later embryonic stages in the retina of T. guttata than in the retina of G. gallus. At E13, one day before hatching, abundant PCNA- and pHisH3-immunoreactivities were detected in the T. guttata retina, while proliferation was almost absent in the G. gallus retina at perinatal stages. Therefore, these results suggest that cell differentiation in the retina is delayed in the altricial bird compared to precocial birds. Furthermore, the T. guttata retina was not completely developed at hatching, and abundant mitotically active precursor cells of retinal neurons were found, suggesting that retinal neurogenesis was intense at perinatal stages.


Assuntos
Diferenciação Celular/fisiologia , Desenvolvimento Embrionário/fisiologia , Tentilhões/embriologia , Retina/embriologia , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Western Blotting , Proliferação de Células/fisiologia , Embrião de Galinha , Proteínas do Olho/metabolismo , Imuno-Histoquímica , Neurogênese/fisiologia , Retina/citologia
3.
Nucleic Acids Res ; 44(10): 4665-83, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-26883630

RESUMO

Cell differentiation is a central process in development and in cancer growth and dissemination. OCT4 (POU5F1) and NANOG are essential for cell stemness and pluripotency; yet, the mechanisms that regulate their expression remain largely unknown. Repetitive elements account for almost half of the Human Genome; still, their role in gene regulation is poorly understood. Here, we show that the dioxin receptor (AHR) leads to differentiation of human carcinoma cells through the transcriptional upregulation of Alu retrotransposons, whose RNA transcripts can repress pluripotency genes. Despite the genome-wide presence of Alu elements, we provide evidences that those located at the NANOG and OCT4 promoters bind AHR, are transcribed by RNA polymerase-III and repress NANOG and OCT4 in differentiated cells. OCT4 and NANOG repression likely involves processing of Alu-derived transcripts through the miRNA machinery involving the Microprocessor and RISC. Consistently, stable AHR knockdown led to basal undifferentiation, impaired Alus transcription and blockade of OCT4 and NANOG repression. We suggest that transcripts produced from AHR-regulated Alu retrotransposons may control the expression of stemness genes OCT4 and NANOG during differentiation of carcinoma cells. The control of discrete Alu elements by specific transcription factors may have a dynamic role in genome regulation under physiological and diseased conditions.


Assuntos
Elementos Alu , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Diferenciação Celular/genética , Regulação Neoplásica da Expressão Gênica , Receptores de Hidrocarboneto Arílico/fisiologia , Teratocarcinoma/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma/patologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Humanos , Camundongos , MicroRNAs/metabolismo , Proteína Homeobox Nanog/genética , Fator 3 de Transcrição de Octâmero/genética , Regiões Promotoras Genéticas , RNA Polimerase III/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Teratocarcinoma/enzimologia , Teratocarcinoma/metabolismo , Teratocarcinoma/patologia , Teratoma/genética , Teratoma/metabolismo , Transcrição Gênica , Tretinoína/farmacologia
4.
Toxicol Appl Pharmacol ; 334: 192-206, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28923513

RESUMO

Hexachlorobenzene (HCB) is a widespread environmental pollutant and a dioxin-like compound that binds weakly to the aryl hydrocarbon receptor (AhR). Because AhR and transforming growth factor ß1 (TGF-ß1) converge to regulate common signaling pathways, alterations in this crosstalk might contribute to developing preneoplastic lesions. The aim of this study was to evaluate HCB action on TGF-ß1 and AhR signaling in mouse mammary gland, through AhR+/+ and AhR-/- models. Results showed a differential effect in mouse mammary epithelial cells (NMuMG), depending on the dose: 0.05µM HCB induced cell migration and TGF-ß1 signaling, whereas 5µM HCB reduced cell migration, promoted cell cycle arrest and stimulated the dioxin response element (DRE) -dependent pathway. HCB (5µM) enhanced α-smooth muscle actin expression and decreased TGF-ß receptor II mRNA levels in immortalized mouse mammary fibroblasts AhR+/+, resembling the phenotype of transformed cells. Accordingly, their conditioned medium was able to enhance NMuMG cell migration. Assays in C57/Bl6 mice showed HCB (3mg/kg body weight) to enhance ductal hyperplasia, cell proliferation, estrogen receptor α nuclear localization, branch density, and the number of terminal end buds in mammary gland from AhR+/+ mice. Primary culture of mammary epithelial cells from AhR+/+ mice showed reduced AhR mRNA levels after HCB exposure (0.05 and 5µM). Interestingly, AhR-/- mice exhibited an increase in ductal hyperplasia and mammary growth in the absence of HCB treatment, thus revealing the importance of AhR in mammary development. Our findings show that environmental HCB concentrations modulate AhR and TGF-ß1 signaling, which could contribute to altered mammary branching morphogenesis, likely leading to preneoplastic lesions and retaining terminal end buds.


Assuntos
Poluentes Ambientais/toxicidade , Hexaclorobenzeno/toxicidade , Hiperplasia/induzido quimicamente , Glândulas Mamárias Animais/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Linhagem Celular , Feminino , Regulação da Expressão Gênica/fisiologia , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/patologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais , Fator de Crescimento Transformador beta1/genética
5.
J Biol Chem ; 288(11): 7841-7856, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23382382

RESUMO

Recent studies have emphasized the role of the dioxin receptor (AhR) in maintaining cell morphology, adhesion, and migration. These novel AhR functions depend on the cell phenotype, and although AhR expression maintains mesenchymal fibroblasts migration, it inhibits keratinocytes motility. These observations prompted us to investigate whether AhR modulates the epithelial-to-mesenchymal transition (EMT). For this, we have used primary AhR(+/+) and AhR(-/-) keratinocytes and NMuMG cells engineered to knock down AhR levels (sh-AhR) or to express a constitutively active receptor (CA-AhR). Both AhR(-/-) keratinocytes and sh-AhR NMuMG cells had increased migration, reduced levels of epithelial markers E-cadherin and ß-catenin, and increased expression of mesenchymal markers Snail, Slug/Snai2, vimentin, fibronectin, and α-smooth muscle actin. Consistently, AhR(+/+) and CA-AhR NMuMG cells had reduced migration and enhanced expression of epithelial markers. AhR activation by the agonist FICZ (6-formylindolo[3,2-b]carbazole) inhibited NMuMG migration, whereas the antagonist α-naphthoflavone induced migration as did AhR knockdown. Exogenous TGFß exacerbated the promigratory mesenchymal phenotype in both AhR-expressing and AhR-depleted cells, although the effects on the latter were more pronounced. Rescuing AhR expression in sh-AhR cells reduced Snail and Slug/Snai2 levels and cell migration and restored E-cadherin levels. Interference of AhR in human HaCaT cells further supported its role in EMT. Interestingly, co-immunoprecipitation and immunofluorescence assays showed that AhR associates in common protein complexes with E-cadherin and ß-catenin, suggesting the implication of AhR in cell-cell adhesion. Thus, basal or TGFß-induced AhR down-modulation could be relevant in the acquisition of a motile EMT phenotype in both normal and transformed epithelial cells.


Assuntos
Regulação Neoplásica da Expressão Gênica , Regulação da Expressão Gênica , Receptores de Hidrocarboneto Arílico/biossíntese , Fator de Crescimento Transformador beta/metabolismo , Animais , Animais Recém-Nascidos , Linhagem Celular , Movimento Celular , Progressão da Doença , Transição Epitelial-Mesenquimal , Inativação Gênica , Homeostase , Humanos , Queratinócitos/citologia , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência/métodos , Interferência de RNA , Receptores de Hidrocarboneto Arílico/genética , Retroviridae
6.
Cell Commun Signal ; 12: 57, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-25238970

RESUMO

BACKGROUND: Adhesion and migration are relevant physiological functions that must be regulated by the cell under both normal and pathological conditions. The dioxin receptor (AhR) has emerged as a transcription factor regulating both processes in mesenchymal, epithelial and endothelial cells. Indirect results suggest that AhR could cooperate not only with additional transcription factors but also with membrane-associated proteins to drive such processes. RESULTS: In this study, we have used immortalized and primary dermal fibroblasts from wild type (AhR+/+) and AhR-null (AhR-/-) mice to show that AhR modulates membrane distribution and mobilization of caveolin-1 (Cav-1) during directional cell migration. AhR co-immunoprecipitated with Cav-1 and a fraction of both proteins co-localized to detergent-resistant membrane microdomains (DRM). Consistent with a role of AhR in the process, AhR-/- cells had a significant reduction in Cav-1 in DRMs. Moreover, high cell density reduced AhR nuclear levels and moved Cav-1 from DRMs to the soluble membrane in AhR+/+ but not in AhR-/- cells. Tyrosine-14 phosphorylation had a complex role in the mechanism since its upregulation reduced Cav-1 in DRMs in both AhR+/+ and AhR-/-cells, despite the lower basal levels of Y14-Cav-1 in the null cells. Fluorescence recovery after photobleaching revealed that AhR knock-down blocked Cav-1 transport to the plasma membrane, a deficit possibly influencing its depleted levels in DRMs. Membrane distribution of Cav-1 in AhR-null fibroblasts correlated with higher levels of cholesterol and with disrupted membrane microdomains, whereas addition of exogenous cholesterol changed the Cav-1 distribution of AhR+/+ cells to the null phenotype. Consistently, higher cholesterol levels enhanced caveolae-dependent endocytosis in AhR-null cells. CONCLUSIONS: These results suggest that AhR modulates Cav-1 distribution in migrating cells through the control of cholesterol-enriched membrane microdomains. Our study also supports the likely possibility of membrane-related, transcription factor independent, functions of AhR.


Assuntos
Caveolina 1/metabolismo , Movimento Celular/fisiologia , Colesterol/metabolismo , Fibroblastos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Células Cultivadas , Endocitose , Fibroblastos/fisiologia , Camundongos , Camundongos Knockout , Receptores de Hidrocarboneto Arílico/genética
7.
Carcinogenesis ; 34(12): 2683-93, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23843039

RESUMO

Melanoma is a highly metastatic and malignant skin cancer having poor rates of patient survival. Since the incidence of melanoma is steadily increasing in the population, finding prognostic and therapeutic targets are crucial tasks in cancer. The dioxin receptor (AhR) is required for xenobiotic-induced toxicity and carcinogenesis and for cell physiology and organ homeostasis. Yet, the mechanisms by which AhR affects tumor growth and dissemination are largely uncharacterized. We report here that AhR contributes to the tumor-stroma interaction, blocking melanoma growth and metastasis when expressed in the tumor cell but supporting melanoma when expressed in the stroma. B16F10 cells engineered to lack AhR (small hairpin RNA for AhR) exacerbated melanoma primary tumorigenesis and lung metastasis when injected in AhR+/+ recipient mice but not when injected in AhR- /- mice or when co-injected with AhR-/- fibroblasts in an AhR+/+ stroma. Contrary, B16F10 cells expressing a constitutively active AhR had reduced tumorigenicity and invasiveness in either AhR genetic background. The tumor suppressor role of AhR in melanoma cells correlated with reduced migration and invasion, with lower numbers of cancer stem-like cells and with altered levels of ß1-integrin and caveolin1. Human melanoma cell lines with highest AHR expression also had lowest migration and invasion. Moreover, AHR expression was reduced in human melanomas with respect to nevi lesions. We conclude that AhR knockdown in melanoma cells requires stromal AhR for maximal tumor progression and metastasis. Thus, AhR can be a molecular marker in melanoma and its activity in both tumor and stromal compartments should be considered.


Assuntos
Melanoma/genética , Melanoma/patologia , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Receptores de Hidrocarboneto Arílico/genética , Proteínas Supressoras de Tumor/genética , Animais , Carcinogênese/genética , Carcinogênese/patologia , Caveolinas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Fibroblastos/patologia , Humanos , Integrina beta1/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Células-Tronco Neoplásicas/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
8.
Aging (Albany NY) ; 14(10): 4281-4304, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35619220

RESUMO

Aging impairs organismal homeostasis leading to multiple pathologies. Yet, the mechanisms and molecular intermediates involved are largely unknown. Here, we report that aged aryl hydrocarbon receptor-null mice (AhR-/-) had exacerbated cellular senescence and more liver progenitor cells. Senescence-associated markers ß-galactosidase (SA-ß-Gal), p16Ink4a and p21Cip1 and genes encoding senescence-associated secretory phenotype (SASP) factors TNF and IL1 were overexpressed in aged AhR-/- livers. Chromatin immunoprecipitation showed that AhR binding to those gene promoters repressed their expression, thus adjusting physiological levels in AhR+/+ livers. MCP-2, MMP12 and FGF secreted by senescent cells were overproduced in aged AhR-null livers. Supporting the relationship between senescence and stemness, liver progenitor cells were overrepresented in AhR-/- mice, probably contributing to increased hepatocarcinoma burden. These AhR roles are not liver-specific since adult and embryonic AhR-null fibroblasts underwent senescence in culture, overexpressing SA-ß-Gal, p16Ink4a and p21Cip1. Notably, depletion of senescent cells with the senolytic agent navitoclax restored expression of senescent markers in AhR-/- fibroblasts, whereas senescence induction by palbociclib induced an AhR-null-like phenotype in AhR+/+ fibroblasts. AhR levels were downregulated by senescence in mouse lungs but restored upon depletion of p16Ink4a-expressing senescent cells. Thus, AhR restricts age-induced senescence associated to a differentiated phenotype eventually inducing resistance to liver tumorigenesis.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina , Receptores de Hidrocarboneto Arílico , Envelhecimento/metabolismo , Animais , Senescência Celular/fisiologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Fibroblastos/metabolismo , Fígado/metabolismo , Camundongos , Receptores de Hidrocarboneto Arílico/genética
9.
J Biol Chem ; 284(37): 25135-48, 2009 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-19617630

RESUMO

Angiogenesis has key roles in development and in the progression of human diseases such as cancer. Consequently, identifying the novel markers and regulators of angiogenesis is a critical task. The dioxin receptor (AhR) contributes to vascular homeostasis and to the endothelial response to toxins, although the mechanisms involved are largely uncharacterized. Here, we show that AhR-null mice (AhR(-/-)) have impaired angiogenesis in vivo that compromises tumor xenograft growth. Aortic rings emigration experiments and RNA interference indicated that AhR(-/-) endothelial cells failed to branch and to form tube-like structures. Such a phenotype was found to be vascular endothelial growth factor (VEGF)-dependent, as AhR(-/-) aortic endothelial cells (MAECs) secreted lower amounts of active VEGF-A and their treatment with VEGF-A rescued angiogenesis in culture and in vivo. Further, the addition of anti-VEGF antibody to AhR(+/+) MAECs reduced angiogenesis. Treatment under hypoxic conditions with 2-methoxyestradiol suggested that HIF-1alpha modulates endothelial VEGF expression in an AhR-dependent manner. Importantly, AhR-null stromal myofibroblasts produced increased transforming growth factor-beta (TGFbeta) activity, which inhibited angiogenesis in human endothelial cells (HMECs) and AhR(-/-) mice, whereas the co-culture of HMECs with AhR(-/-) myofibroblasts or with their conditioned medium inhibited branching, which was restored by an anti-TGFbeta antibody. Moreover, VEGF and TGFbeta activities cooperated in modulating angiogenesis, as the addition of TGFbeta to AhR(-/-) MAECs further reduced their low basal VEGF-A activity. Thus, AhR modulates angiogenesis through a mechanism requiring VEGF activation in the endothelium and TGFbeta inactivation in the stroma. These data highlight the role of AhR in cardiovascular homeostasis and suggest that this receptor can be a novel regulator of angiogenesis during tumor development.


Assuntos
Endotélio/metabolismo , Neovascularização Patológica , Receptores de Hidrocarboneto Arílico/deficiência , Receptores de Hidrocarboneto Arílico/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Aorta/patologia , Cobalto/farmacologia , Células-Tronco Embrionárias/citologia , Fibroblastos/metabolismo , Hipóxia , Melanoma Experimental , Camundongos , Transplante de Neoplasias , Recombinação Genética
10.
Cell Chem Biol ; 25(3): 268-278.e4, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29290623

RESUMO

Mitochondria are dynamic organelles that produce most of the cellular ATP, and are involved in many other cellular functions such as Ca2+ signaling, differentiation, apoptosis, cell cycle, and cell growth. One key process of mitochondrial dynamics is mitochondrial fusion, which is catalyzed by mitofusins (MFN1 and MFN2) and OPA1. The outer mitochondrial membrane protein MFN2 plays a relevant role in the maintenance of mitochondrial metabolism, insulin signaling, and mutations that cause neurodegenerative disorders. Therefore, modulation of proteins involved in mitochondrial dynamics has emerged as a potential pharmacological strategy. Here, we report the identification of small molecules by high-throughput screen that promote mitochondrial elongation in an MFN1/MFN2-dependent manner. Detailed analysis of their mode of action reveals a previously unknown connection between pyrimidine metabolism and mitochondrial dynamics. Our data indicate a link between pyrimidine biosynthesis and mitochondrial dynamics, which maintains cell survival under stress conditions characterized by loss of pyrimidine synthesis.


Assuntos
Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Pirimidinas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Di-Hidro-Orotato Desidrogenase , Doxorrubicina/farmacologia , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Humanos , Leflunomida/farmacologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/agonistas , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/agonistas , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Porinas/genética , Porinas/metabolismo , Pirimidinas/biossíntese , RNA Mensageiro/metabolismo , Transcriptoma/efeitos dos fármacos
11.
Open Biol ; 6(12)2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28003471

RESUMO

Previous studies suggested that the aryl hydrocarbon receptor (AhR) contributes to mice reproduction and fertility. However, the mechanisms involved remain mostly unknown. Retrotransposon silencing by Piwi-interacting RNAs (piRNAs) is essential for germ cell maturation and, remarkably, AhR has been identified as a regulator of murine B1-SINE retrotransposons. Here, using littermate AhR+/+ and AhR-/- mice, we report that AhR regulates the general course of spermatogenesis and oogenesis by a mechanism likely to be associated with piRNA-associated proteins, piRNAs and retrotransposons. piRNA-associated proteins MVH and Miwi are upregulated in leptotene to pachytene spermatocytes with a more precocious timing in AhR-/- than in AhR+/+ testes. piRNAs and transcripts from B1-SINE, LINE-1 and IAP retrotransposons increased at these meiotic stages in AhR-null testes. Moreover, B1-SINE transcripts colocalize with MVH and Miwi in leptonema and pachynema spermatocytes. Unexpectedly, AhR-/- males have increased sperm counts, higher sperm functionality and enhanced fertility than AhR+/+ mice. In contrast, piRNA-associated proteins and B1-SINE and IAP-derived transcripts are reduced in adult AhR-/- ovaries. Accordingly, AhR-null female mice have lower numbers of follicles when compared with AhR+/+ mice. Thus, AhR deficiency differentially affects testis and ovary development possibly by a process involving piRNA-associated proteins, piRNAs and transposable elements.


Assuntos
Proteínas Argonautas/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , RNA Helicases DEAD-box/genética , Ovário/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Retroelementos/genética , Testículo/metabolismo , Animais , Proteínas Argonautas/metabolismo , RNA Helicases DEAD-box/metabolismo , Feminino , Fertilidade , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Masculino , Meiose , Camundongos , RNA Interferente Pequeno/metabolismo , Regulação para Cima
12.
J Cell Sci ; 122(Pt 11): 1823-33, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19435800

RESUMO

Delayed wound healing caused by inefficient re-epithelialization underlines chronic skin lesions such as those found in diabetes. The dioxin receptor (AhR) modulates cell plasticity and migration and its activation by occupational polycyclic aromatic hydrocarbons (PAHs) results in severe skin lesions such as contact hypersensitivity, dermatitis and chloracne. Using wild-type (Ahr+/+) and AhR-null (Ahr-/-) mouse primary keratinocyte cultures and tissue explants, we show that lack of AhR increases keratinocyte migration and accelerates skin re-epithelialization without affecting cell proliferation or recruitment of inflammatory cells. Wounds in Ahr-/- animals had elevated numbers of fibroblasts and increased collagen content in their granulation tissue. Importantly, Ahr-/- dermal fibroblasts secreted higher levels of active TGFbeta that increased keratinocyte migration in culture and that could account for over-activation of the TGFbeta pathway and for faster wound healing in the AhR-null neo-epithelium. Consistently, a TGFbeta neutralizing antibody decreased keratinocyte migration in culture and halted re-epithelialization in Ahr-/- mice. Moreover, in vivo treatment with an antisense oligonucleotide for AhR increased TGFbeta signaling and improved re-epithelialization in wounds of wild-type mice. These data indicate that AhR is relevant for wound repair and suggest that AhR downmodulation might be a potential new tool for the treatment of chronic, surgical or accidental wounds.


Assuntos
Receptores de Hidrocarboneto Arílico/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Cicatrização/fisiologia , Animais , Células Cultivadas , Colágeno/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Pele/citologia , Pele/metabolismo , Pele/patologia , Fator de Crescimento Transformador beta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA