Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Virol ; 96(15): e0198021, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35852352

RESUMO

Atypical porcine pestiviruses (APPV; Pestivirus K) are a recently discovered, very divergent species of the genus Pestivirus within the family Flaviviridae. The presence of APPV in piglet-producing farms is associated with the occurrence of so-called "shaking piglets," suffering from mild to severe congenital tremor type A-II. Previous studies showed that the cellular protein DNAJC14 is an essential cofactor of the NS2 autoprotease of all classical pestiviruses. Consequently, genetically engineered DNAJC14 knockout cell lines were resistant to all tested noncytopathogenic (non-cp) pestiviruses. Surprisingly, we found that the non-cp APPV can replicate in these cells in the absence of DNAJC14, suggesting a divergent mechanism of polyprotein processing. A complete laboratory system for the study of APPV was established to learn more about the replication of this unusual virus. The inactivation of the APPV NS2 autoprotease using reverse genetics resulted in nonreplicative genomes. To further investigate whether a regulation of the NS2-3 cleavage is also existing in APPV, we constructed synthetic viral genomes with deletions and duplications leading to the NS2 independent release of mature NS3. As observed with other pestiviruses, the increase of mature NS3 resulted in elevated viral RNA replication levels and increased protein expression. Our data suggest that APPV exhibit a divergent mechanism for the regulation of the NS2 autoprotease activity most likely utilizing a different cellular protein for the adjustment of replication levels. IMPORTANCE DNAJC14 is an essential cofactor of the pestiviral NS2 autoprotease, limiting replication to tolerable levels as a prerequisite for the noncytopathogenic biotype of pestiviruses. Surprisingly, we found that the atypical porcine pestivirus (APPV) is able to replicate in the absence of DNAJC14. We further investigated the NS2-3 processing of APPV using a molecular clone, monoclonal antibodies, and DNAJC14 knockout cells. We identified two potential active site residues of the NS2 autoprotease and could demonstrate that the release of NS3 by the NS2 autoprotease is essential for APPV replication. Defective interfering genomes and viral genomes with duplicated NS3 sequences that produce mature NS3 independent of the NS2 autoprotease activity showed increased replication and antigen expression. It seems likely that an alternative cellular cofactor controls NS2-3 cleavage and thus replication of APPV. The replication-optimized synthetic APPV genomes might be suitable live vaccine candidates, whose establishment and testing warrant further research.


Assuntos
Chaperonas Moleculares , Infecções por Pestivirus , Pestivirus , Suínos , Replicação Viral , Animais , Linhagem Celular , Coenzimas , Genoma Viral/genética , Interações Hospedeiro-Patógeno , Chaperonas Moleculares/genética , Pestivirus/classificação , Pestivirus/enzimologia , Pestivirus/crescimento & desenvolvimento , Infecções por Pestivirus/veterinária , RNA Viral/genética , Suínos/virologia , Doenças dos Suínos/virologia , Proteases Virais/metabolismo , Replicação Viral/genética
2.
PLoS Pathog ; 17(4): e1009064, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33882114

RESUMO

Vaccines of outstanding efficiency, safety, and public acceptance are needed to halt the current SARS-CoV-2 pandemic. Concerns include potential side effects caused by the antigen itself and safety of viral DNA and RNA delivery vectors. The large SARS-CoV-2 spike (S) protein is the main target of current COVID-19 vaccine candidates but can induce non-neutralizing antibodies, which might cause vaccination-induced complications or enhancement of COVID-19 disease. Besides, encoding of a functional S in replication-competent virus vector vaccines may result in the emergence of viruses with altered or expanded tropism. Here, we have developed a safe single round rhabdovirus replicon vaccine platform for enhanced presentation of the S receptor-binding domain (RBD). Structure-guided design was employed to build a chimeric minispike comprising the globular RBD linked to a transmembrane stem-anchor sequence derived from rabies virus (RABV) glycoprotein (G). Vesicular stomatitis virus (VSV) and RABV replicons encoding the minispike not only allowed expression of the antigen at the cell surface but also incorporation into the envelope of secreted non-infectious particles, thus combining classic vector-driven antigen expression and particulate virus-like particle (VLP) presentation. A single dose of a prototype replicon vaccine complemented with VSV G, VSVΔG-minispike-eGFP (G), stimulated high titers of SARS-CoV-2 neutralizing antibodies in mice, equivalent to those found in COVID-19 patients, and protected transgenic K18-hACE2 mice from COVID-19-like disease. Homologous boost immunization further enhanced virus neutralizing activity. The results demonstrate that non-spreading rhabdovirus RNA replicons expressing minispike proteins represent effective and safe alternatives to vaccination approaches using replication-competent viruses and/or the entire S antigen.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Imunização/métodos , SARS-CoV-2/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL
4.
J Struct Biol ; 197(2): 172-180, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27345930

RESUMO

Enveloped viruses enter their host cells by membrane fusion. The process of attachment and fusion in retroviruses is mediated by a single viral envelope glycoprotein (Env). Conformational changes of Env in the course of fusion are a focus of intense studies. Here we provide further insight into the changes occurring in retroviral Env during its initial interaction with the cell, employing murine leukemia virus (MLV) as model system. We first determined the structure of both natively membrane anchored MLV Env and MLV Env tagged with YFP in the proline rich region (PRR) by electron cryo tomography (cET) and sub-volume averaging. At a resolution of ∼20Å, native MLV Env presents as a hollow trimer (height ∼85Å, diameter ∼120Å) composed of step-shaped protomers. The major difference to the YFP-tagged protein was in regions outside of the central trimer. Next, we focused on elucidating the changes in MLV Env upon interaction with a host cell. Virus interaction with the plasma membrane occurred over a large surface and Env clustering on the binding site was observed. Sub-volume averaging did yield a low-resolution structure of Env interacting with the cell, which had lost its threefold symmetry and was elongated by ∼35Å in comparison to the unbound protein. This indicates a major rearrangement of Env upon host cell binding. At the site of virus interaction, the otherwise clearly defined bilayer structure of the host cell plasma membrane was much less evident, indicative of integral membrane protein accumulation and/or a change in membrane lipid composition.


Assuntos
Microscopia Crioeletrônica/métodos , Vírus da Leucemia Murina/ultraestrutura , Proteínas do Envelope Viral/ultraestrutura , Sítios de Ligação , Vírus da Leucemia Murina/fisiologia , Conformação Proteica
5.
Emerg Infect Dis ; 23(7): 1176-1179, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28628456

RESUMO

A novel pestivirus species was discovered in a piglet-producing farm in Austria during virologic examinations of congenital tremor cases. The emergence of this novel pestivirus species, provisionally termed Linda virus, in domestic pigs may have implications for classical swine fever virus surveillance and porcine health management.


Assuntos
Infecções por Pestivirus/veterinária , Pestivirus/classificação , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia , Animais , Áustria/epidemiologia , Surtos de Doenças , História do Século XXI , Imuno-Histoquímica , Pestivirus/genética , Pestivirus/metabolismo , Fenótipo , Filogenia , RNA Viral , Sus scrofa , Suínos , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/história
6.
Vet Res ; 48(1): 1, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28057061

RESUMO

In 2013, several Austrian piglet-producing farms recorded outbreaks of action-related repetitive myoclonia in newborn piglets ("shaking piglets"). Malnutrition was seen in numerous piglets as a complication of this tremor syndrome. Overall piglet mortality was increased and the number of weaned piglets per sow decreased by more than 10% due to this outbreak. Histological examination of the CNS of affected piglets revealed moderate hypomyelination of the white substance in cerebellum and spinal cord. We detected a recently discovered pestivirus, termed atypical porcine pestivirus (APPV) in all these cases by RT-PCR. A genomic sequence and seven partial sequences were determined and revealed a 90% identity to the US APPV sequences and 92% identity to German sequences. In confirmation with previous reports, APPV genomes were identified in different body fluids and tissues including the CNS of diseased piglets. APPV could be isolated from a "shaking piglet", which was incapable of consuming colostrum, and passaged on different porcine cells at very low titers. To assess the antibody response a blocking ELISA was developed targeting NS3. APPV specific antibodies were identified in sows and in PCR positive piglets affected by congenital tremor (CT). APPV genomes were detected continuously in piglets that gradually recovered from CT, while the antibody titers decreased over a 12-week interval, pointing towards maternally transmitted antibodies. High viral loads were detectable by qRT-PCR in saliva and semen of infected young adults indicating a persistent infection.


Assuntos
Infecções por Pestivirus/veterinária , Pestivirus , Doenças dos Suínos/virologia , Animais , Animais Recém-Nascidos/virologia , Anticorpos Antivirais/imunologia , Áustria/epidemiologia , Surtos de Doenças/veterinária , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Masculino , Pestivirus/genética , Infecções por Pestivirus/congênito , Infecções por Pestivirus/epidemiologia , Infecções por Pestivirus/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Análise de Sequência de DNA/veterinária , Suínos , Doenças dos Suínos/congênito , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/patologia , Carga Viral/veterinária
7.
Vet Res ; 47: 17, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26754154

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) causes major problems for the swine industry worldwide. Due to Austria's central location in Europe, a large number of animals are transported through the country. However, little is known about current PRRSV strains and epidemiology. We determined full-length genome sequences of two Austrian field isolates (AUT13-883 and AUT14-440) from recent PRRSV outbreaks and of a related German isolate (GER09-613). Phylogenetic analysis revealed that the strains belong to European genotype 1 subtype 1 and form a cluster together with a South Korean strain. Remarkably, AUT14-440 infected the simian cell line MARC-145 without prior adaptation. In addition, this isolate showed exceptional deletions in nonstructural protein 2, in the overlapping region of glycoprotein 3 and 4 and in the 3' untranslated region. Both Austrian isolates caused similar lung lesions but only pigs infected with AUT14-440 developed clear clinical signs of infection. Taken together, the genetic and biological characterization of two novel Austrian PRRSV field isolates revealed similarities to East Asian strains. This stresses the necessity for a more detailed analysis of current PRRSV strains in Europe beyond the determination of short ORF5 and ORF7 sequences.


Assuntos
Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Sequência de Aminoácidos , Animais , Áustria/epidemiologia , Células Cultivadas , Surtos de Doenças/veterinária , Ásia Oriental/epidemiologia , Feminino , Regulação Viral da Expressão Gênica , Macrófagos Alveolares/fisiologia , Macrófagos Alveolares/virologia , Masculino , Dados de Sequência Molecular , Filogenia , Síndrome Respiratória e Reprodutiva Suína/epidemiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/classificação , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Suínos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Viremia , Virulência , Eliminação de Partículas Virais
8.
J Virol ; 87(21): 11872-83, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23986594

RESUMO

Classical swine fever virus (CSFV) is a positive-stranded RNA virus belonging to the genus Pestivirus within the Flaviviridae family. Pivotal for processing of a large portion of the viral polyprotein is a serine protease activity within nonstructural protein 3 (NS3) that also harbors helicase and NTPase activities essential for RNA replication. In CSFV-infected cells, NS3 appears as two forms, a fully processed NS3 of 80 kDa and the precursor molecule NS2-3 of 120 kDa. Here we report the identification and mapping of additional autocatalytic intramolecular cleavages. One cleavable peptide bond occurs between Leu1781 and Met1782, giving rise to a helicase subunit of 55 kDa and, depending on the substrate, a NS2-3 fragment of 78 kDa (NS2-3p) or a NS3 protease subunit of 26 kDa (NS3p). In trans-cleavage assays using NS4-5 as a substrate, NS3p acts as a fully functional protease that is able to process the polyprotein. NS3p comprises the minimal essential protease, as deletion of Leu1781 results in inactivation. A second intramolecular cleavage was mapped to the Leu1748/Lys1749 peptide bond that yields a proteolytically inactive NS3 fragment. Deletion of either of the cleavage site residues resulted in a loss of RNA infectivity, indicating the functional importance of amino acid identity at the respective positions. Our data suggest that internal cleavage within the NS3 moiety is a common process that further extends the functional repertoires of the multifunctional NS2-3 or NS3 and represents another level of the complex polyprotein processing of Flaviviridae.


Assuntos
Vírus da Febre Suína Clássica/enzimologia , Vírus da Febre Suína Clássica/fisiologia , Peptídeo Hidrolases/metabolismo , RNA Helicases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Animais , Linhagem Celular , Análise Mutacional de DNA , Hidrólise , Processamento de Proteína Pós-Traducional , Serina Endopeptidases/metabolismo
9.
PLoS Pathog ; 8(3): e1002598, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22457622

RESUMO

Core protein of Flaviviridae is regarded as essential factor for nucleocapsid formation. Yet, core protein is not encoded by all isolates (GBV- A and GBV- C). Pestiviruses are a genus within the family Flaviviridae that affect cloven-hoofed animals, causing economically important diseases like classical swine fever (CSF) and bovine viral diarrhea (BVD). Recent findings describe the ability of NS3 of classical swine fever virus (CSFV) to compensate for disabling size increase of core protein (Riedel et al., 2010). NS3 is a nonstructural protein possessing protease, helicase and NTPase activity and a key player in virus replication. A role of NS3 in particle morphogenesis has also been described for other members of the Flaviviridae (Patkar et al., 2008; Ma et al., 2008). These findings raise questions about the necessity and function of core protein and the role of NS3 in particle assembly. A reverse genetic system for CSFV was employed to generate poorly growing CSFVs by modification of the core gene. After passaging, rescued viruses had acquired single amino acid substitutions (SAAS) within NS3 helicase subdomain 3. Upon introduction of these SAAS in a nonviable CSFV with deletion of almost the entire core gene (Vp447(Δc)), virus could be rescued. Further characterization of this virus with regard to its physical properties, morphology and behavior in cell culture did not reveal major differences between wildtype (Vp447) and Vp447(Δc). Upon infection of the natural host, Vp447(Δc) was attenuated. Hence we conclude that core protein is not essential for particle assembly of a core-encoding member of the Flaviviridae, but important for its virulence. This raises questions about capsid structure and necessity, the role of NS3 in particle assembly and the function of core protein in general.


Assuntos
Vírus da Febre Suína Clássica/fisiologia , Peste Suína Clássica/virologia , Proteínas do Core Viral/fisiologia , Proteínas não Estruturais Virais/fisiologia , Animais , Linhagem Celular , Peste Suína Clássica/sangue , Vírus da Febre Suína Clássica/patogenicidade , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Suínos , Virulência , Replicação Viral
10.
Structure ; 32(3): 273-281.e4, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38176409

RESUMO

Pestiviruses, within the family Flaviviridae, are economically important viruses of livestock. In recent years, new pestiviruses have been reported in domestic animals and non-cloven-hoofed animals. Among them, atypical porcine pestivirus (APPV) and Norway rat pestivirus (NRPV) have relatively little sequence conservation in their surface glycoprotein E2. Despite E2 being the main target for neutralizing antibodies and necessary for cell attachment and viral fusion, the mechanism of viral entry remains elusive. To gain further insights into the pestivirus E2 mechanism of action and to assess its diversity within the genus, we report X-ray structures of the pestivirus E2 proteins from APPV and NRPV. Despite the highly divergent structures, both are able to dimerize through their C-terminal domain and contain a solvent-exposed ß-hairpin reported to be involved in host receptor binding. Functional analysis of this ß-hairpin in the context of BVDV revealed its ability to rescue viral infectivity.


Assuntos
Pestivirus , Suínos , Animais , Ratos , Pestivirus/genética , Glicoproteínas , Anticorpos Neutralizantes , Glicoproteínas de Membrana , Filogenia
11.
Viruses ; 15(1)2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36680298

RESUMO

The emergence of recombinant PRRSV strains has been observed for more than a decade. These recombinant viruses are characterized by a genome that contains genetic material from at least two different parental strains. Due to the advanced sequencing techniques and a growing number of data bank entries, the role of PRRSV recombinants has become increasingly important since they are sometimes associated with clinical outbreaks. Chimeric viruses observed more recently are products of PRRSV wild-type and vaccine strains. Here, we report on three PRRSV-1 isolates from geographically distant farms with differing clinical manifestations. A sequencing and recombination analysis revealed that these strains are crossovers between different wild-type strains and the same modified live virus vaccine strain. Interestingly, the recombination breakpoint of all analyzed isolates appears at the beginning of open reading frame 5 (ORF5). RNA structure predictions indicate a conserved stem loop in close proximity to the recombination hotspot, which is a plausible cause of a polymerase template switch during RNA replication. Further research into the mechanisms of the stem loop is needed to help understand the PRRSV recombination process and the role of MLVs as parental strains.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Fases de Leitura Aberta , Recombinação Genética , Filogenia
12.
Pathogens ; 12(8)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37624003

RESUMO

Acute abdominal pain (colic) is one of the major equine health threats worldwide and often necessitates intensive veterinary medical care and surgical intervention. Equine coronavirus (ECoV) infections can cause colic in horses but are rarely considered as a differential diagnosis. To determine the frequency of otherwise undetected ECoV infections in horses with acute colic, fresh fecal samples of 105 horses with acute colic and 36 healthy control horses were screened for viruses belonging to the Betacoronavirus 1 species by RT-PCR as well as for gastrointestinal helminths and bacteria commonly associated with colic. Horses with colic excreted significantly fewer strongyle eggs than horses without colic. The prevalence of anaerobic, spore-forming, gram-positive bacteria (Clostridium perfringens and Clostridioides difficile) was significantly higher in the feces of horses with colic. Six horses with colic (5.7%) and one horse from the control group (2.8%) tested positive for Betacoronaviruses. Coronavirus-positive samples were sequenced to classify the virus by molecular phylogeny (N gene). Interestingly, in three out of six coronavirus-positive horses with colic, sequences closely related to bovine coronaviruses (BCoV) were found. The pathogenic potential of BCoV in horses remains unclear and warrants further investigation.

13.
J Virol ; 85(7): 3607-20, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21270154

RESUMO

Proteolytic processing of polyproteins is considered a crucial step in the life cycle of most positive-strand RNA viruses. An enhancement of NS2-3 processing has been described as a major difference between the noncytopathogenic (non-CP) and the cytopathogenic (CP) biotypes of pestiviruses. The effects of accelerated versus delayed NS2-3 processing on the maturation of the other nonstructural proteins (NSP) have never been compared. In this study, we analyzed the proteolytic processing of NSP in Classical swine fever virus (CSFV). Key to the investigation was a panel of newly developed monoclonal antibodies (MAbs) that facilitated monitoring of all nonstructural proteins involved in virus replication (NS2, NS3, NS4A, NS5A, and NS5B). Applying these MAbs in Western blotting and radioimmunoprecipitation allowed an unambiguous identification of the mature proteins and precursors in non-CP CSFV-infected cells. Furthermore, the kinetics of processing were determined by pulse-chase analyses for non-CP CSFV, CP CSFV, and a CP CSFV replicon. A slow but constant processing of NS4A/B-5A/B occurred in non-CP CSFV-infected cells, leading to balanced low-level concentrations of mature NSP. In contrast, the turnover of the polyprotein precursors was three times faster in CP CSFV-infected cells and in cells transfected with a CP CSFV replicon, causing a substantial increase of mature NSP concentrations. We conclude that a delayed processing not only of NS3 but further of all NSP represents a hallmark of regulation in non-CP pestiviruses.


Assuntos
Vírus da Febre Suína Clássica/genética , Vírus da Febre Suína Clássica/fisiologia , Proteínas não Estruturais Virais/biossíntese , Replicação Viral , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Western Blotting , Linhagem Celular , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Processamento de Proteína Pós-Traducional , Ensaio de Radioimunoprecipitação , Suínos , Proteínas não Estruturais Virais/genética
14.
Scand J Public Health ; 40(3): 271-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22637366

RESUMO

AIMS: Up to this date, the obesity pandemic has yet to be confined, with prevalence rates still rising in most countries. Aside from numerous negative consequences such as comorbid diseases and a reduction in life expectancy due to excessive bodyweight and the economic impact of obesity on healthcare systems, negative outcomes in overweight and obese individuals are also affected by perceived stigmatisation and discrimination. Knowledge of common views and perception overweight and obesity in the general public as well as in specific populations (e.g. healthcare professionals) is crucial in order to develop stigma-reduction interventions. The specific aim of the current study was to develop an appropriate questionnaire to be used in the survey to follow and further to enhance existing instruments. METHODS: This qualitative study reports results from focus groups with normal-weight and overweight individuals as well as healthcare professionals. RESULTS: Contents of the discussion of overweight and obesity did not differ substantially between the three groups. Results show that the definition of obesity in our focus groups is a subjective construct influenced mainly by aesthetics, sympathy, and activity. Within the groups, obesity was mainly seen as a controllable condition; however, external, such as societal, factors were named as well. In line with this and as expected from theoretical background, obese individuals are ascribed mainly negative attributions. CONCLUSIONS: With these results, this study enlightens lived realities of different groups of people. The results can be applied to improve existing instruments for the measurement of attitudes towards obesity.


Assuntos
Obesidade/psicologia , Percepção Social , Estigma Social , Adolescente , Adulto , Idoso , Atitude do Pessoal de Saúde , Feminino , Grupos Focais , Humanos , Masculino , Pessoa de Meia-Idade , Sobrepeso/psicologia , Pesquisa Qualitativa , Inquéritos e Questionários , Adulto Jovem
15.
Pathogens ; 11(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35335629

RESUMO

During the annual hunt in a privately owned Austrian game population in fall 2019 and 2020, 64 red deer (Cervus elaphus), 5 fallow deer (Dama dama), 6 mouflon (Ovis gmelini musimon), and 95 wild boars (Sus scrofa) were shot and sampled for PCR testing. Pools of spleen, lung, and tonsillar swabs were screened for specific nucleic acids of porcine circoviruses. Wild ruminants were additionally tested for herpesviruses and pestiviruses, and wild boars were screened for pseudorabies virus (PrV) and porcine lymphotropic herpesviruses (PLHV-1-3). PCV2 was detectable in 5% (3 of 64) of red deer and 75% (71 of 95) of wild boar samples. In addition, 24 wild boar samples (25%) but none of the ruminants tested positive for PCV3 specific nucleic acids. Herpesviruses were detected in 15 (20%) ruminant samples. Sequence analyses showed the closest relationships to fallow deer herpesvirus and elk gammaherpesvirus. In wild boars, PLHV-1 was detectable in 10 (11%), PLHV-2 in 44 (46%), and PLHV-3 in 66 (69%) of animals, including 36 double and 3 triple infections. No pestiviruses were detectable in any ruminant samples, and all wild boar samples were negative in PrV-PCR. Our data demonstrate a high prevalence of PCV2 and PLHVs in an Austrian game population, confirm the presence of PCV3 in Austrian wild boars, and indicate a low risk of spillover of notifiable animal diseases into the domestic animal population.

16.
Front Vet Sci ; 9: 820233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464363

RESUMO

Reproductive disorders induced by porcine reproductive and respiratory syndrome virus (PRRSV) cause high economic losses in the pig industry worldwide. In this study, we aimed to phenotypically characterize a virulent PRRSV-1 subtype 1 isolate (AUT15-33) in a reproductive model. Furthermore, the protective effect of a heterologous modified live virus vaccine (ReproCyc® PRRS EU) was evaluated. In addition, PRRSV AUT15-33 was genotypically compared to other well-characterized isolates. Sixteen gilts were equally divided into four groups: a vaccinated and infected group (V-I), a vaccinated and non-infected group (V-NI), a non-vaccinated and infected group (NV-I), and a non-vaccinated and non-infected (NV-NI) group. After PRRSV infection on gestation day 84, all gilts were clinically examined on a daily basis, and blood samples were taken at five timepoints. Necropsy was performed 3 weeks after infection. The fetal preservation status was assessed, and PRRSV RNA concentrations were measured in the blood and tissue samples from all gilts and fetuses. After infection, all four gilts in the NV-I group were viremic throughout 17 days post-infection (dpi), whereas two gilts in the V-I group were viremic at only one timepoint at 6 dpi. The viral load was significantly higher in gilt serum, tracheobronchial lymph nodes, uterine lymph nodes, maternal endometrium, and fetal placenta of NV-I gilts compared to the V-I ones (p < 0.05). Moreover, the preservation status of the fetuses derived from NV-I gilts was significantly impaired (55.9% of viable fetuses) compared to the other groups (p < 0.001). Upon comparison with other known isolates, the phylogenetic analyses revealed the closest relation to a well-characterized PRRSV-1 subtype 1 field isolate from Belgium. In conclusion, the high virulence of AUT15-33 was phenotypically confirmed in an experimental reproductive model. The vaccination of the gilts showed promising results in reducing viremia, fetal damage, and transplacental transmission of the PRRSV-1 strain characterized in this study.

17.
Viruses ; 14(2)2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-35215920

RESUMO

Linda virus (LindaV) was first identified in a pig farm in Styria, Austria in 2015 and associated with congenital tremor (CT) type A-II in newborn piglets. Since then, only one more LindaV affected farm was retrospectively discovered 10 km away from the initially affected farm. Here, we report the recent outbreak of a novel LindaV strain in a farrow-to-finish farm in the federal state Carinthia, Austria. No connection between this farm and the previously affected farms could be discovered. The outbreak was characterized by severe CT cases in several litters and high preweaning mortality. A herd visit two months after the onset of clinical symptoms followed by a diagnostic workup revealed the presence of several viremic six-week-old nursery pigs. These animals shed large amounts of virus via feces and saliva, implying an important epidemiological role for within- and between-herd virus transmission. The novel LindaV strain was isolated and genetically characterized. The findings underline a low prevalence of LindaV in the Austrian pig population and highlight the threat when introduced into a pig herd. Furthermore, the results urge the need to better understand the routes of persistence and transmission of this enigmatic pestivirus in the pig population.


Assuntos
Doenças Transmissíveis Emergentes/veterinária , Infecções por Pestivirus/veterinária , Pestivirus/isolamento & purificação , Doenças dos Suínos/virologia , Animais , Áustria/epidemiologia , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/virologia , Surtos de Doenças , Fazendas , Fezes/virologia , Pestivirus/classificação , Pestivirus/genética , Pestivirus/fisiologia , Infecções por Pestivirus/epidemiologia , Infecções por Pestivirus/virologia , Filogenia , Estudos Retrospectivos , Suínos , Doenças dos Suínos/epidemiologia
18.
Viruses ; 14(2)2022 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-35215974

RESUMO

The entry of BVDV into bovine cells was studied using CRIB cells (cells resistant to infection with bovine viral diarrhea virus [BVDV]) that have evolved from MDBK cells by a spontaneous loss of susceptibility to BVDV. Recently, larger genetic deletions were reported but no correlation of the affected genes and the resistance to BVDV infection could be established. The metalloprotease ADAM17 was reported as an essential attachment factor for the related classical swine fever virus (CSFV). To assess whether ADAM17 might be involved in the resistance of CRIB-1 cells to pestiviruses, we analyzed its expression in CRIB-1 and MDBK cells. While ADAM17 protein was detectable in MBDK cells, it was absent from CRIB-1 cells. No functional full-length ADAM17 mRNA could be detected in CRIB cells and genetic analysis revealed the presence of two defective alleles. Transcomplementation of functional ADAM17 derived from MDBK cells in CRIB-1 cells resulted in a nearly complete reversion of their resistance to pestiviral infection. Our results demonstrate that ADAM17 is a key cellular factor for the pestivirus resistance of CRIB-1 cells and establishes its essential role for a broader range of pestiviruses.


Assuntos
Proteína ADAM17/metabolismo , Linhagem Celular/virologia , Vírus da Diarreia Viral Bovina/metabolismo , Pestivirus/metabolismo , Animais , Bovinos , Vírus da Diarreia Viral Bovina/fisiologia , Pestivirus/fisiologia , Replicação Viral/fisiologia
19.
Viruses ; 14(9)2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36146698

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most relevant porcine pathogens worldwide. Active control of the disease relies on modified live virus vaccines (MLVs), as most inactivated vaccines provide very limited protection. Neutralizing antibodies occur late in infection; therefore, CD8+ T cells are considered important correlates of protection and are a frequent focus of investigation. Our aim was to identify viral peptides naturally bound by the class I major histocompatibility complex (MHC-I) and to confirm their ability to stimulate CD8+ T cells. For this purpose, we immunoprecipitated MHC-I/peptide complexes of PRRSV (strain AUT15-33) -infected cells (SLA-I Lr-Hp 35.0/24 mod) to isolate the viral epitopes and analyzed them with liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Furthermore, we employed these identified peptides to stimulate peripheral blood mononuclear cells (PBMCs) of previously PRRSV-infected pigs and measured the PRRSV-specific CD8+ T-cell response with an intracellular cytokine staining (ICS). Our data revealed that PRRSV non-structural proteins (NSPs), encoded in open reading frame 1a and 1b (ORF1), present the major source of MHC-I-presented peptides. Additionally, we show that our identified epitopes are able to trigger IFNγ responses in vitro. These findings are a basis for understanding the proteasomal degradation of PRRSV proteins, the cellular ability to display them via MHC-I, and their potential to restimulate CD8+ T cells.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Vacinas Virais , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Linfócitos T CD8-Positivos , Cromatografia Líquida , Citocinas , Epitopos , Leucócitos Mononucleares , Complexo Principal de Histocompatibilidade , Peptídeos , Suínos , Espectrometria de Massas em Tandem , Vacinas Atenuadas , Vacinas de Produtos Inativados
20.
J Virol ; 84(21): 11523-31, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20702631

RESUMO

Pestiviruses are pathogens of cloven-hoofed animals, belonging to the Flaviviridae. The pestiviral particle consists of a lipid membrane containing the three envelope glycoproteins Erns, E1, and E2 and a nucleocapsid of unknown symmetry, which is composed of the Core protein and the viral positive-sense RNA genome. The positively charged pestiviral Core protein consists of 86 to 89 amino acids. To analyze the organization of essential domains, N- and C-terminal truncations, as well as internal deletions, were introduced into the Core coding sequence in the context of an infectious cDNA clone of classical swine fever virus strain Alfort. Amino acids 179 to 180, 194 to 198, and 208 to 212 proved to be of special importance for the generation of progeny virus. The results of transcomplementation of a series of C-terminally truncated Core molecules indicate the importance of Ala255 at the C terminus. The plasticity of Core protein was examined by the construction of concatemeric arrays of Core coding regions and the insertion of up to three yellow fluorescent protein (YFP) genes between two Core genes. Even a Core fusion protein with more than 10-fold-increased molecular mass was integrated into the viral particle and supported the production of infectious progeny virus. The unexpected plasticity of Core protein brings into question the formation of a regular icosahedric particle and supports the idea of a histone-like protein-RNA interaction. All viruses with a duplicated Core gene were unstable and reverted to the wild-type sequence. Interestingly, a nonviable YFP-Core construct was rescued by a mutation within the C-terminal domain of the nonstructural protein NS3.


Assuntos
Vírus da Febre Suína Clássica , Proteínas do Core Viral , Sequência de Aminoácidos , Aminoácidos , Animais , DNA Complementar , Mutação , Suínos , Proteínas do Core Viral/genética , Vírion
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA