RESUMO
Prenatal infection increases risk for neurodevelopmental disorders such as autism in offspring. In rodents, prenatal administration of the viral mimic Polyinosinic: polycytidylic acid (Poly I: C) allows for investigation of developmental consequences of gestational sickness on offspring social behavior and neural circuit function. Because maternal immune activation (MIA) disrupts cortical development and sociability, we examined approach and avoidance in a rat social affective preference (SAP) task. Following maternal Poly I:C (0.5 mg/kg) injection on gestational day 12.5, male adult offspring (PN 60-64) exhibited atypical social interactions with stressed conspecifics whereas female SAP behavior was unaffected by maternal Poly I:C. Social responses to stressed conspecifics depend upon the insular cortex where corticotropin releasing factor (CRF) modulates synaptic transmission and SAP behavior. We characterized insular field excitatory postsynaptic potentials (fEPSP) in adult offspring of Poly I:C or control treated dams. Male MIA offspring showed decreased sensitivity to CRF (300 nM) while female MIA offspring showed greater sensitivity to CRF compared to sham offspring. These sex specific effects appear to be behaviorally relevant as CRF injected into the insula of male and female rats prior to social exploration testing had no effect in MIA male offspring but increased social interaction in female MIA offspring. We examined the cellular distribution of CRF receptor mRNA but found no effect of maternal Poly I:C in the insula. Together, these experiments reveal sex specific effects of prenatal infection on offspring responses to social affective stimuli and identify insular CRF signaling as a novel neurobiological substrate for autism risk.
Assuntos
Hormônio Liberador da Corticotropina , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Humanos , Ratos , Animais , Masculino , Modelos Animais de Doenças , Comportamento Social , Poli I-C/farmacologia , Comportamento Animal/fisiologiaRESUMO
The ability to detect, appraise, and respond to another's emotional state is essential to social affective behavior. This is mediated by a network of brain regions responsible for integrating external cues with internal states to orchestrate situationally appropriate behavioral responses. The basolateral amygdala (BLA) and the insular cortex are reciprocally connected regions involved in social cognition and prior work in male rats revealed their contributions to social affective behavior. We investigated the functional role of these regions in female rats in a social affective preference (SAP) test in which experimental rats approach stressed juvenile but avoid stressed adult conspecifics. In separate experiments, the BLA or the insula were inhibited by local infusion of muscimol (100ng/side in 0.5µL saline) or vehicle prior to SAP tests. In both regions, muscimol interfered with preference for the stressed juvenile and naive adult, indicating that these regions are necessary for appropriate social affective behavior. In male rats, SAP behavior requires insular oxytocin but there are noteworthy sex differences in the oxytocin receptor distribution in rats. Oxytocin (500nM) administered to the insula did not alter social behavior but oxytocin infusions to the BLA increased social interaction. In sum, female rats appear to use the same BLA and insula regions for social affective behavior but sex differences exist in contribution of oxytocin in the insula.
Assuntos
Complexo Nuclear Basolateral da Amígdala , Ratos , Feminino , Masculino , Animais , Ocitocina/farmacologia , Córtex Insular , Muscimol/farmacologia , Comportamento SocialRESUMO
The ability to detect, appraise, and respond to another's emotional state is essential to social affective behavior. This is mediated by a network of brain regions responsible for integrating external cues with internal states to orchestrate situationally appropriate behavioral responses. The basolateral amygdala (BLA) and the insular cortex are reciprocally connected regions involved in social cognition and prior work in male rats revealed their contributions to social affective behavior. We investigated the functional role of these regions in female rats in a social affective preference (SAP) test in which experimental rats approach stressed juvenile but avoid stressed adult conspecifics. In separate experiments, the BLA or the insula were inhibited by local infusion of muscimol (100ng/side in 0.5µL saline) or vehicle prior to SAP tests. In both regions, muscimol interfered with preference for the stressed juvenile and naive adult, indicating that these regions are necessary for appropriate social affective behavior. In male rats, SAP behavior requires insular oxytocin but there are noteworthy sex differences in the oxytocin receptor distribution in rats. Oxytocin (500nM) administered to the insula did not alter social behavior but oxytocin infusions to the BLA increased social interaction. In sum, female rats appear to use the same BLA and insula regions for social affective behavior but sex differences exist in contribution of oxytocin in the insula.
RESUMO
Monogamous, pair-bonded animals coordinate intra-pair behavior for spatially separated challenges including territorial defense and nest attendance. Paired California mice, a monogamous, territorial and biparental species, approach intruders together or separately, but often express behavioral convergence across intruder challenges. To gain a more systems-wide perspective of potential mechanisms contributing to behavioral convergence across two conspecific intruder challenges, we conducted an exploratory study correlating behavior and receptor mRNA (Days 10 and 17 post-pairing). We examined associations between convergence variability in pair time for intruder-oriented behaviors with a pair mRNA index for oxytocin (OXTR), androgen (AR), and estrogen alpha (ERα) receptors within the medial amygdala (MeA) and the anterior olfactory nucleus (AON), brain regions associated with social behavior. An intruder behavior index revealed a bimodal distribution of intruder-related behaviors in Challenge 1 and a unimodal distribution in Challenge 2, suggesting population behavioral convergence, but no significant correlations with neuroendocrine measures. However, OXTR, AR, and ERα mRNA in the MeA were positively associated with convergence in individual intruder-related behaviors, suggesting multiple mechanisms may influence convergence. Mice could also occupy the nest during intruder challenges and convergence in nest attendance was positively correlated with MeA OXTR. At an individual level, nest attendance was positively associated with MeA ERα. Vocalizations were positively associated with AR and ERα mRNA. No positive associations were found in the AON. Overall, neuroendocrine receptors were implicated in convergence of a monogamous pair's defense behavior, highlighting the potential importance of the MeA as part of a circuit underlying convergence.
Assuntos
Complexo Nuclear Corticomedial , Receptor alfa de Estrogênio , Animais , Receptor alfa de Estrogênio/metabolismo , Comportamento Social , Complexo Nuclear Corticomedial/metabolismo , Ocitocina , RNA Mensageiro , Receptores de Ocitocina/genéticaRESUMO
Vocalizations, chemosignals, and behaviors are influenced by one's internal affective state and are used by others to shape social behaviors. A network of interconnected brain structures, often called the social behavior network or social decision-making network, integrates these stimuli and coordinates social behaviors, and in-network connectivity deficits underlie several psychiatric disorders such as schizophrenia and autism spectrum disorders. Here, we investigated the role of the basolateral amygdala (BLA) and its projections to the posterior insular cortex, regions independently implicated in a range of sociocognitive processes, in a social affective preference (SAP) test. Viral vectors containing the gene coding for inhibitory chemogenetic receptors (AAV5-hSyn-hM4Di-mCherry) were injected into the BLA. SAP tests, which allow for the observation of unconditioned behavioral responses to the affective states of others, were conducted after inhibition of the BLA by systemic administration of the hM4Di agonist clozapine-n-oxide (CNO), or inhibition of BLA-insula terminals by direct infusion of CNO to the insula. After vehicle infusions, rats displayed preference for interactions with stressed juvenile conspecifics. However, CNO treatment eliminated preference behavior. The current results suggest that social decision making involves the transfer of emotional information from the BLA to the insula which represents a previously unrecognized anatomical substrate for social cognition.
Assuntos
Complexo Nuclear Basolateral da Amígdala , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Humanos , Córtex Insular , Ratos , Comportamento Social , Interação SocialRESUMO
Avoidance of sick individuals is vital to the preservation of one's health and preventing transmission of communicable diseases. To do this successfully, one must identify social cues for sickness, which include sickness behaviors and chemosignals, and use this information to orchestrate social interactions. While many social species are highly capable with this process, the neural mechanisms that provide for social responses to sick individuals are only partially understood. To this end, we used a task in which experimental rats were allowed to investigate two conspecifics, one healthy and one sick. To imitate sickness, one conspecific received the viral mimic Polyinosinic:polycytidylic acid (Poly I:C) and the other saline. In a 5-minute social preference test, experimental male and female adult rats avoided Poly I:C treated adult conspecifics but did not adjust social interaction in response to Poly I:C treated juvenile conspecifics. Seeking a neural locus of this behavior, we inhibited the insular cortex, a region necessary for social behaviors directed toward conspecifics in distress. Insular cortex inactivation via administration of the GABAA agonist muscimol to experimental rats prior to social preference tests eliminated the preference to avoid sick adult conspecifics. These results suggest that some aspect of conspecific illness may be encoded in the insular cortex which is anatomically positioned to coordinate a situationally appropriate social response.
Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/fisiologia , Agonistas de Receptores de GABA-A/farmacologia , Comportamento de Doença/efeitos dos fármacos , Córtex Insular/efeitos dos fármacos , Muscimol/farmacologia , Interação Social , Animais , Antivirais/administração & dosagem , Feminino , Masculino , Odorantes , Poli I-C/administração & dosagem , RatosRESUMO
Impairments in identifying and responding to the emotions of others manifest in a variety of psychopathologies. Therefore, elaborating the neurobiological mechanisms that underpin social responses to social emotions, or social affective behavior, is a translationally important goal. The insular cortex is consistently implicated in stress-related social and anxiety disorders, which are associated with diminished ability to make and use inferences about the emotions of others to guide behavior. We investigated how corticotropin-releasing factor (CRF), a neuromodulator evoked upon exposure to stressed conspecifics, influenced the insula. We hypothesized that social affective behavior requires CRF signaling in the insular cortex in order to detect stress in social interactions. In acute slices from male and female rats, CRF depolarized insular pyramidal neurons. In males, but not females, CRF suppressed presynaptic GABAergic inhibition leading to greater excitatory synaptic efficacy in a CRF receptor 1 (CRF1)- and cannabinoid receptor 1 (CB1)-dependent fashion. In males only, insular CRF increased social investigation, and CRF1 and CB1 antagonists interfered with social interactions with stressed conspecifics. To investigate the molecular and cellular basis for the effect of CRF we examined insular CRF1 and CB1 mRNAs and found greater total insula CRF1 mRNA in females but greater CRF1 and CB1 mRNA colocalization in male insular cortex glutamatergic neurons that suggest complex, sex-specific organization of CRF and endocannabinoid systems. Together these results reveal a new mechanism by which stress and affect contribute to social affective behavior.
Assuntos
Hormônio Liberador da Corticotropina , Córtex Insular , Animais , Hormônio Liberador da Corticotropina/metabolismo , Feminino , Masculino , Neurônios/metabolismo , Neurotransmissores , RNA Mensageiro , Ratos , Receptores de Hormônio Liberador da CorticotropinaRESUMO
Coordinated responses to challenge are essential to survival for bonded monogamous animals and may depend on behavioral compatibility. Oxytocin (OT) context-dependently regulates social affiliation and vocal communication, but its role in pair members' decision to jointly respond to challenge is unclear. To test for OT effects, California mouse females received an intranasal dose of OT (IN-OT) or saline after bonding with males either matched or mismatched in their approach response to an aggressive vocal challenge. Pair mates were re-tested jointly for approach response, time spent together, and vocalizations. Females and males converged in their approach after pairing, but mismatched pairs with females given a single dose of IN-OT displayed a greater convergence that resulted from behavioral changes by both pair members. Unpaired females given IN-OT did not change their approach, indicating a social partner was necessary for effects to emerge. Moreover, IN-OT increased time spent approaching together, suggesting behavioral coordination beyond a further increase in bonding. This OT-induced increase in joint approach was associated with a decrease in the proportion of sustained vocalizations, a type of vocalization that can be associated with intra-pair conflict. Our results expand OT's effects on behavioral coordination and underscore the importance of emergent social context.
Assuntos
Agressão/efeitos dos fármacos , Ocitocina/farmacologia , Ligação do Par , Comportamento Sexual Animal/efeitos dos fármacos , Comportamento Social , Administração Intranasal , Animais , Feminino , Masculino , CamundongosRESUMO
Pair-bonding allows for division of labor across behavioral tasks such as protecting a territory, caring for pups or foraging for food. However, how these labor divisions are determined, whether they are simply intrinsic differences in the individual's behavior or a coordinated behavioral response by the pair, remains unknown. We used the monogamous, biparental and territorial California mouse (Peromyscus californicus) to study how behavioral approach to an aggressive vocal stimulus in a novel environment was affected by pair-bonding. Using a three-chambered vocal playback paradigm, we first measured the amount of time individuals spent in close proximity to aggressive bark vocalizations. We found that animals could be categorized as either approachers or avoiders. We then paired individuals based on their initial approach behavior to an opposite sex individual who displayed either similar or different approach behaviors. These pairs were then retested for approach behavior as a dyad 10-11 days post-pairing. This test found that pairs showed convergence in their behavioral responses, such that pairs who were mismatched in their approach behaviors became more similar, and pairs that were matched remained so. Finally, we analyzed the ultrasonic vocalizations (USV) produced and found that pairs produced significantly more USVs than individuals. Importantly, increased USV production correlated with increasing behavioral convergence of pairs. Taken together, this study shows that pair-bonded animals alter their approach behaviors to coordinate their response with their partner and that vocal communication may play a role in coordinating these behavioral responses. Overall, our findings indicate that pair-bonding generates an emergent property in pairs, adjusting their combined approach behavior towards a new aggressive stimulus representing a potential challenge to the bonded pair. Such findings may be broadly important for social bonding in other social systems.
Assuntos
Peromyscus , Agressão , Animais , Ligação do Par , Comportamento Social , Vocalização AnimalRESUMO
During agonistic encounters, the perception of a larger opponent through morphological signaling typically suppresses aggression in the smaller individual, preventing contest intensity escalation. However, non-morphological factors such as central serotonin (5-HT) activity can influence individual aggression, potentially altering contest intensity despite initial size discrepancies. When male stalk-eyed flies (Teleopsis dalmanni) fight, contest escalation is directly proportional to similarity in body size, with escalation being lower in size-mismatched contests. We have shown that both high-intensity aggression and the probability of winning are increased in males with pharmacologically elevated 5-HT relative to size-matched non-treated opponents. Here, we hypothesized that, in size-mismatched contests, increasing brain 5-HT in the smaller opponent could similarly increase aggression and counteract the low contest intensity normally driven by size discrepancy. Size-mismatched male pairs (greater than 5% difference in eyestalk length) engaged in a forced fight paradigm, with the smaller fly either untreated or with pharmacologically elevated 5-HT levels. The expression of high-intensity aggressive behaviors was significantly increased in smaller treated opponents, but the probability of winning was not altered. This suggests that while elevated serotonergic activity can increase aggression and intensity despite perception of a larger opponent, this is not sufficient to overcome size biases with respect to contest outcome. However, the fact that larger opponents continued to win against smaller treated flies was not simply a function of size. Instead, untreated larger males adjusted their fighting strategy to match the increased aggression of their smaller treated opponent, suggesting contextual flexibility in behavior based on individual opponent assessment.