RESUMO
Surgical reconstruction of the anterior cruciate ligament (ACL) and subsequent physical therapy can help athletes return to competition; however, re-injury rates remain disproportionately high due, in part, to lingering biomechanical and neurological factors that are not fully addressed during rehabilitation. Prior reports indicate that individuals exhibit altered electrical activity in both brain and muscle after ACL reconstruction (ACLR). In this investigation, we aimed to extend existing approaches by introducing a novel non-linear analysis of corticomuscular dynamics, which does not assume oscillatory coupling between brain and muscle: Corticomuscular cross-recurrence analysis (CM-cRQA). Our findings indicate that corticomuscular dynamics vary significantly between involved (injured) and uninvolved legs of participants with ACLR during voluntary isometric contractions between the brain and both the vastus medialis and lateralis. This finding points to a potential lingering neural deficit underlying re-injury for athletes after surgical reconstruction, namely the dynamical structure of neuromuscular (brain to quad muscle) coordination, which is significantly asymmetric, between limbs, in those who have ACLR.
Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Relesões , Humanos , Lesões do Ligamento Cruzado Anterior/cirurgia , Relesões/cirurgia , Músculo Quadríceps/fisiologia , Extremidades , Força Muscular/fisiologiaRESUMO
This study investigated differences in electroencephalography (EEG) activity within motor-related brain areas during three phases of a single-leg squat (SLS)-i.e., descending, holding, and ascending phases. Specifically, utilizing advanced magnetic resonance imaging guided EEG source localization techniques and markerless motion capture technology, we explored the interplay between concurrently recorded lower-extremity biomechanics and brain activity. Among the phases of a nondominant leg SLS, differences in contralateral brain activity (right hemisphere) were found in the activity of the precentral gyrus, the postcentral gyrus, and the sensory motor area. Alternatively, during the dominant SLS leg, differences among the three SLS phases in contralateral brain activity were fewer. Hemispheric dependent brain activity also significantly correlated with participants' knee valgus angle range of motion (right hemisphere) and peak knee valgus angles (left hemisphere). In addition to the novel brain and biomechanical findings, this study sheds light on the technical feasibility of recording EEG during complex multi-joint movements and its potential applications in understanding sensorimotor behavior.
Assuntos
Eletroencefalografia , Humanos , Masculino , Eletroencefalografia/métodos , Feminino , Adulto Jovem , Adulto , Fenômenos Biomecânicos/fisiologia , Imageamento por Ressonância Magnética , Joelho/fisiologia , Movimento/fisiologia , Amplitude de Movimento Articular/fisiologia , Lateralidade Funcional/fisiologia , Articulação do Joelho/fisiologia , Mapeamento Encefálico/métodos , Perna (Membro)/fisiologiaRESUMO
BACKGROUND: Young athletes who specialize early in a single sport may subsequently be at increased risk of injury. While heightened injury risk has been theorized to be related to volume or length of exposure to a single sport, the development of unhealthy, homogenous movement patterns, and rigid neuromuscular control strategies may also be indicted. Unfortunately, traditional laboratory assessments have limited capability to expose such deficits due to the simplistic and constrained nature of laboratory measurement techniques and analyses. METHODS: To overcome limitations of prior studies, the authors proposed a soccer-specific virtual reality header assessment to characterize the generalized movement regularity of 44 young female athletes relative to their degree of sport specialization (high vs low). Participants also completed a traditional drop vertical jump assessment. RESULTS: During the virtual reality header assessment, significant differences in center of gravity sample entropy (a measure of movement regularity) were present between specialized (center of gravity sample entropy: mean = 0.08, SD = 0.02) and nonspecialized center of gravity sample entropy: mean = 0.10, SD = 0.03) groups. Specifically, specialized athletes exhibited more regular movement patterns during the soccer header than the nonspecialized athletes. However, no significant between-group differences were observed when comparing participants' center of gravity time series data from the drop vertical jump assessment. CONCLUSIONS: This pattern of altered movement strategy indicates that realistic, sport-specific virtual reality assessments may be uniquely beneficial in exposing overly rigid movement patterns of individuals who engage in repeated sport specialized practice.
Assuntos
Traumatismos em Atletas , Futebol , Esportes , Realidade Virtual , Humanos , Feminino , Futebol/lesões , Atletas , MovimentoRESUMO
PURPOSE OF REVIEW: In this review, we present recent findings and advancements in the use of neuroimaging to evaluate neural activity relative to ACL injury risk and patellofemoral pain. In particular, we describe prior work using fMRI and EEG that demonstrate the value of these techniques as well as the necessity of continued development in this area. Our goal is to support future work by providing guidance for the successful application of neuroimaging techniques that most effectively expose pain and injury mechanisms. RECENT FINDINGS: Recent studies that utilized both fMRI and EEG indicate that athletes who are at risk for future ACL injury exhibit divergent brain activity both during active lower extremity movement and at rest. Such activity patterns are likely due to alterations to cognitive, visual, and attentional processes that manifest as coordination deficits during naturalistic movement that may result in higher risk of injury. Similarly, in individuals with PFP altered brain activity in a number of key regions is related to subjective pain judgements as well as measures of fear of movement. Although these findings may begin to allow objective pain assessment and identification, continued refinement is needed. One key limitation across both ACL and PFP related work is the restriction of movement during fMRI and EEG data collection, which drastically limits ecological validity. Given the lack of sufficient research using EEG and fMRI within a naturalistic setting, our recommendation is that researchers target the use of mobile, source localized EEG as a primary methodology for exposing neural mechanisms of ACL injury risk and PFP. Our contention is that this method provides an optimal balance of spatial and temporal resolution with ecological validity via naturalistic movement.
RESUMO
Optically pumped magnetometers (OPMs) can capture brain activity but are susceptible to magnetic noise. The objective of this study was to evaluate a novel methodology used to reduce magnetic noise in OPM measurements. A portable magnetoencephalography (MEG) prototype was developed with OPMs. The OPMs were divided into primary sensors and reference sensors. For each primary sensor, a synthetic gradiometer (SG) was constructed by computing a secondary sensor that simulated noise with signals from the reference sensors. MEG data from a phantom with known source signals and six human participants were used to assess the efficacy of the SGs. Magnetic noise in the OPM data appeared predominantly in a low frequency range (<4 Hz) and varied among OPMs. The SGs significantly reduced magnetic noise (p < 0.01), enhanced the signal-to-noise ratio (SNR) (p < 0.001) and improved the accuracy of source localization (p < 0.02). The SGs precisely revealed movement-evoked magnetic fields in MEG data recorded from human participants. SGs provided an effective method to enhance SNR and improve the accuracy of source localization by suppressing noise. Software-simulated SGs may provide new opportunities regarding the use of OPM measurements in various clinical and research applications, especially those in which movement is relevant.
RESUMO
CONTEXT: Visual biofeedback has been shown to facilitate injury-resistant movement acquisition in adolescent athletes. Visual biofeedback is typically thought to foster implicit learning by stimulating athletes to focus attention externally (on movement outcome). However, biofeedback may also induce explicit learning if the athlete uses the visual information to consciously guide movement execution (via an internal focus). OBJECTIVE: To determine the degree to which athletes reported statements indicating implicit or explicit motor learning after engaging in a visual biofeedback intervention. DESIGN: Prospective cohort study. SETTING: Three-dimensional motion-analysis laboratory. PATIENTS OR OTHER PARTICIPANTS: Twenty-five adolescent female soccer athletes (age = 15.0 ± 1.5 years, height = 165.7 ± 5.9 cm, mass = 59.4 ± 10.6 kg). INTERVENTIONS: Standard 6-week neuromuscular training intervention (three 90-minute sessions/wk), with added visual biofeedback sessions (2 sessions/wk). For the biofeedback training, participants performed squatting and jumping movements while interacting with a visual rectangular stimulus that mapped key parameters associated with injury risk. After the last biofeedback session in each week, participants answered open-ended questions to probe learning strategies. MAIN OUTCOME MEASURE(S): Responses to the open-ended questions were categorized as externally focused (ie, on movement outcome, suggestive of implicit learning), internally focused (ie, on movement itself, suggestive of explicit learning), mixed focus, or other. RESULTS: A total of 171 open-ended responses were collected. Most of the responses that could be categorized (39.2%) were externally focused (41.8%), followed by mixed (38.8%) and internally focused (19.4%). The frequency of externally focused statements increased from week 1 (18%) to week 6 (50%). CONCLUSIONS: Although most statements were externally focused (suggesting implicit learning), the relatively large proportion of internal- and mixed-focus statements suggested that many athletes also engaged in explicit motor learning, especially in early practice sessions. Therefore, biofeedback may affect motor learning through a mixture of implicit and explicit learning.
Assuntos
Biorretroalimentação Psicológica , Movimento , Adolescente , Humanos , Feminino , Estudos Prospectivos , Biorretroalimentação Psicológica/métodos , Postura , Aprendizagem/fisiologiaRESUMO
Background: Integrated movement and cognitive load paradigms are used to expose impairments associated with concussion and musculoskeletal injury. There is currently little information on the discriminatory nature of dual-task complexity and the relative influence of physical exertion on cognitive outcomes. Purpose: Assess cognitive performance while under motor conditions of increasing complexity before and after a standardized exercise protocol. Methods: 34 participants were recruited (17 male and 17 female; 24 ± 1.4 yrs). A modified Eriksen flanker test was used to assess cognitive performance under four conditions (seated, single-leg stance, walking, and lateral stepping) before and after a 20-min moderate-to vigorous intensity treadmill protocol. The flanker test consisted of 20 sets of 5-arrow configurations, appearing in random order. To complete the response to cognitive stimulus, participants held a smartphone horizontally and were instructed to respond as quickly and as accurately as possible by tilting the device in the direction corresponding to the orientation of the middle arrow. The metrics used for analysis included average reaction time (ms), inverse efficiency index (average reaction time penalized for incorrect responses), and conflict effect (the average time cost of responding to an incongruent repetition vs. a congruent repetition). Mixed effects (condition by time) RMANOVAs were conducted to examine the effects of motor task complexity and physical exertion on cognitive performance. Results: There was a condition by time interaction for inverse efficiency index (p < 0.001), in which participants displayed higher cognitive efficiency for the pre-activity lateral stepping condition compared to the other three conditions (Cohen's d = 1.3-1.6). For reaction time and conflict effect, there were main effects for condition (p = 0.004 and 0.006, respectively), in which performance during lateral stepping was improved in relation to the seated condition (reaction time Cohen's d = 0.68; conflict effect Cohen's d = 0.64). Conclusion: Participants tended to display better dual-task cognitive performance under more stimulating or complex motor tasks before physical exertion, likely associated with the inverted-U arousal-performance relationship. When using dual-task assessments, clinicians should be mindful of the accompanying motor task and baseline exertion levels and their potential to disrupt or optimize cognitive performance.