Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 15(12): e2002760, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29232375

RESUMO

The scholars comprising journal editorial boards play a critical role in defining the trajectory of knowledge in their field. Nevertheless, studies of editorial board composition remain rare, especially those focusing on journals publishing research in the increasingly globalized fields of science, technology, engineering, and math (STEM). Using metrics for quantifying the diversity of ecological communities, we quantified international representation on the 1985-2014 editorial boards of 24 environmental biology journals. Over the course of 3 decades, there were 3,827 unique scientists based in 70 countries who served as editors. The size of the editorial community increased over time-the number of editors serving in 2014 was 4-fold greater than in 1985-as did the number of countries in which editors were based. Nevertheless, editors based outside the "Global North" (the group of economically developed countries with high per capita gross domestic product [GDP] that collectively concentrate most global wealth) were extremely rare. Furthermore, 67.18% of all editors were based in either the United States or the United Kingdom. Consequently, geographic diversity-already low in 1985-remained unchanged through 2014. We argue that this limited geographic diversity can detrimentally affect the creativity of scholarship published in journals, the progress and direction of research, the composition of the STEM workforce, and the development of science in Latin America, Africa, the Middle East, and much of Asia (i.e., the "Global South").


Assuntos
Biologia , Ecologia , Políticas Editoriais , Internacionalidade , Editoração , Estados Unidos
2.
Ecology ; 100(2): e02568, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30499218

RESUMO

Large-scale observational data from citizen science efforts are becoming increasingly common in ecology, and researchers often choose between these and data from intensive local-scale studies for their analyses. This choice has potential trade-offs related to spatial scale, observer variance, and interannual variability. Here we explored this issue with phenology by comparing models built using data from the large-scale, citizen science USA National Phenology Network (USA-NPN) effort with models built using data from more intensive studies at Long Term Ecological Research (LTER) sites. We built statistical and process based phenology models for species common to each data set. From these models, we compared parameter estimates, estimates of phenological events, and out-of-sample errors between models derived from both USA-NPN and LTER data. We found that model parameter estimates for the same species were most similar between the two data sets when using simple models, but parameter estimates varied widely as model complexity increased. Despite this, estimates for the date of phenological events and out-of-sample errors were similar, regardless of the model chosen. Predictions for USA-NPN data had the lowest error when using models built from the USA-NPN data, while LTER predictions were best made using LTER-derived models, confirming that models perform best when applied at the same scale they were built. This difference in the cross-scale model comparison is likely due to variation in phenological requirements within species. Models using the USA-NPN data set can integrate parameters over a large spatial scale while those using an LTER data set can only estimate parameters for a single location. Accordingly, the choice of data set depends on the research question. Inferences about species-specific phenological requirements are best made with LTER data, and if USA-NPN or similar data are all that is available, then analyses should be limited to simple models. Large-scale predictive modeling is best done with the larger-scale USA-NPN data, which has high spatial representation and a large regional species pool. LTER data sets, on the other hand, have high site fidelity and thus characterize inter-annual variability extremely well. Future research aimed at forecasting phenology events for particular species over larger scales should develop models that integrate the strengths of both data sets.


Assuntos
Mudança Climática , Modelos Teóricos , Estudos Longitudinais , Estações do Ano
3.
Front Microbiol ; 14: 1267234, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38163064

RESUMO

The volatility of metabolites can influence their biological roles and inform optimal methods for their detection. Yet, volatility information is not readily available for the large number of described metabolites, limiting the exploration of volatility as a fundamental trait of metabolites. Here, we adapted methods to estimate vapor pressure from the functional group composition of individual molecules (SIMPOL.1) to predict the gas-phase partitioning of compounds in different environments. We implemented these methods in a new open pipeline called volcalc that uses chemoinformatic tools to automate these volatility estimates for all metabolites in an extensive and continuously updated pathway database: the Kyoto Encyclopedia of Genes and Genomes (KEGG) that connects metabolites, organisms, and reactions. We first benchmark the automated pipeline against a manually curated data set and show that the same category of volatility (e.g., nonvolatile, low, moderate, high) is predicted for 93% of compounds. We then demonstrate how volcalc might be used to generate and test hypotheses about the role of volatility in biological systems and organisms. Specifically, we estimate that 3.4 and 26.6% of compounds in KEGG have high volatility depending on the environment (soil vs. clean atmosphere, respectively) and that a core set of volatiles is shared among all domains of life (30%) with the largest proportion of kingdom-specific volatiles identified in bacteria. With volcalc, we lay a foundation for uncovering the role of the volatilome using an approach that is easily integrated with other bioinformatic pipelines and can be continually refined to consider additional dimensions to volatility. The volcalc package is an accessible tool to help design and test hypotheses on volatile metabolites and their unique roles in biological systems.

4.
Elife ; 72018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29313491

RESUMO

Bergmann's rule is a widely-accepted biogeographic rule stating that individuals within a species are smaller in warmer environments. While there are many single-species studies and integrative reviews documenting this pattern, a data-intensive approach has not been used yet to determine the generality of this pattern. We assessed the strength and direction of the intraspecific relationship between temperature and individual mass for 952 bird and mammal species. For eighty-seven percent of species, temperature explained less than 10% of variation in mass, and for 79% of species the correlation was not statistically significant. These results suggest that Bergmann's rule is not general and temperature is not a dominant driver of biogeographic variation in mass. Further understanding of size variation will require integrating multiple processes that influence size. The lack of dominant temperature forcing weakens the justification for the hypothesis that global warming could result in widespread decreases in body size.


Assuntos
Pesos e Medidas Corporais , Exposição Ambiental , Animais , Variação Biológica da População , Aves , Mamíferos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA