Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Genes Dev ; 31(11): 1073-1088, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28717046

RESUMO

DNA replication results in the doubling of the genome prior to cell division. This process requires the assembly of 50 or more protein factors into a replication fork. Here, we review recent structural and biochemical insights that start to explain how specific proteins recognize DNA replication origins, load the replicative helicase on DNA, unwind DNA, synthesize new DNA strands, and reassemble chromatin. We focus on the minichromosome maintenance (MCM2-7) proteins, which form the core of the eukaryotic replication fork, as this complex undergoes major structural rearrangements in order to engage with DNA, regulate its DNA-unwinding activity, and maintain genome stability.


Assuntos
Replicação do DNA/fisiologia , Animais , Cromatina/metabolismo , DNA Helicases/metabolismo , Replicação do DNA/genética , Evolução Molecular , Instabilidade Genômica/genética , Humanos , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Origem de Replicação/fisiologia
2.
Proc Natl Acad Sci U S A ; 117(30): 17747-17756, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32669428

RESUMO

DNA replication origins serve as sites of replicative helicase loading. In all eukaryotes, the six-subunit origin recognition complex (Orc1-6; ORC) recognizes the replication origin. During late M-phase of the cell-cycle, Cdc6 binds to ORC and the ORC-Cdc6 complex loads in a multistep reaction and, with the help of Cdt1, the core Mcm2-7 helicase onto DNA. A key intermediate is the ORC-Cdc6-Cdt1-Mcm2-7 (OCCM) complex in which DNA has been already inserted into the central channel of Mcm2-7. Until now, it has been unclear how the origin DNA is guided by ORC-Cdc6 and inserted into the Mcm2-7 hexamer. Here, we truncated the C-terminal winged-helix-domain (WHD) of Mcm6 to slow down the loading reaction, thereby capturing two loading intermediates prior to DNA insertion in budding yeast. In "semi-attached OCCM," the Mcm3 and Mcm7 WHDs latch onto ORC-Cdc6 while the main body of the Mcm2-7 hexamer is not connected. In "pre-insertion OCCM," the main body of Mcm2-7 docks onto ORC-Cdc6, and the origin DNA is bent and positioned adjacent to the open DNA entry gate, poised for insertion, at the Mcm2-Mcm5 interface. We used molecular simulations to reveal the dynamic transition from preloading conformers to the loaded conformers in which the loading of Mcm2-7 on DNA is complete and the DNA entry gate is fully closed. Our work provides multiple molecular insights into a key event of eukaryotic DNA replication.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , Replicação do DNA , Origem de Replicação , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Componente 6 do Complexo de Manutenção de Minicromossomo/química , Componente 6 do Complexo de Manutenção de Minicromossomo/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Complexo de Reconhecimento de Origem , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
3.
Genes Dev ; 28(20): 2291-303, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25319829

RESUMO

Eukaryotic cells license each DNA replication origin during G1 phase by assembling a prereplication complex that contains a Mcm2-7 (minichromosome maintenance proteins 2-7) double hexamer. During S phase, each Mcm2-7 hexamer forms the core of a replicative DNA helicase. However, the mechanisms of origin licensing and helicase activation are poorly understood. The helicase loaders ORC-Cdc6 function to recruit a single Cdt1-Mcm2-7 heptamer to replication origins prior to Cdt1 release and ORC-Cdc6-Mcm2-7 complex formation, but how the second Mcm2-7 hexamer is recruited to promote double-hexamer formation is not well understood. Here, structural evidence for intermediates consisting of an ORC-Cdc6-Mcm2-7 complex and an ORC-Cdc6-Mcm2-7-Mcm2-7 complex are reported, which together provide new insights into DNA licensing. Detailed structural analysis of the loaded Mcm2-7 double-hexamer complex demonstrates that the two hexamers are interlocked and misaligned along the DNA axis and lack ATP hydrolysis activity that is essential for DNA helicase activity. Moreover, we show that the head-to-head juxtaposition of the Mcm2-7 double hexamer generates a new protein interaction surface that creates a multisubunit-binding site for an S-phase protein kinase that is known to activate DNA replication. The data suggest how the double hexamer is assembled and how helicase activity is regulated during DNA licensing, with implications for cell cycle control of DNA replication and genome stability.


Assuntos
Proteínas de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/metabolismo , Saccharomyces cerevisiae/enzimologia , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Ativação Enzimática , Hidrólise , Microscopia Eletrônica , Proteínas de Manutenção de Minicromossomo/isolamento & purificação , Conformação Molecular , Ligação Proteica
4.
Genes Dev ; 28(15): 1653-66, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25085418

RESUMO

The regulated loading of the replicative helicase minichromosome maintenance proteins 2-7 (MCM2-7) onto replication origins is a prerequisite for replication fork establishment and genomic stability. Origin recognition complex (ORC), Cdc6, and Cdt1 assemble two MCM2-7 hexamers into one double hexamer around dsDNA. Although the MCM2-7 hexamer can adopt a ring shape with a gap between Mcm2 and Mcm5, it is unknown which Mcm interface functions as the DNA entry gate during regulated helicase loading. Here, we establish that the Saccharomyces cerevisiae MCM2-7 hexamer assumes a closed ring structure, suggesting that helicase loading requires active ring opening. Using a chemical biology approach, we show that ORC-Cdc6-Cdt1-dependent helicase loading occurs through a unique DNA entry gate comprised of the Mcm2 and Mcm5 subunits. Controlled inhibition of DNA insertion triggers ATPase-driven complex disassembly in vitro, while in vivo analysis establishes that Mcm2/Mcm5 gate opening is essential for both helicase loading onto chromatin and cell cycle progression. Importantly, we demonstrate that the MCM2-7 helicase becomes loaded onto DNA as a single hexamer during ORC/Cdc6/Cdt1/MCM2-7 complex formation prior to MCM2-7 double hexamer formation. Our study establishes the existence of a unique DNA entry gate for regulated helicase loading, revealing key mechanisms in helicase loading, which has important implications for helicase activation.


Assuntos
DNA Fúngico/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/enzimologia , Trifosfato de Adenosina/metabolismo , Ciclo Celular , Cromossomos Fúngicos/metabolismo , Ativação Enzimática , Hidrólise , Proteínas de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/ultraestrutura , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Subunidades Proteicas/química , Subunidades Proteicas/genética , Origem de Replicação/fisiologia , Saccharomyces cerevisiae/genética
5.
Mol Cell ; 50(4): 577-88, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23603117

RESUMO

In Saccharomyces cerevisiae and higher eukaryotes, the loading of the replicative helicase MCM2-7 onto DNA requires the combined activities of ORC, Cdc6, and Cdt1. These proteins load MCM2-7 in an unknown way into a double hexamer around DNA. Here we show that MCM2-7 recruitment by ORC/Cdc6 is blocked by an autoinhibitory domain in the C terminus of Mcm6. Interestingly, Cdt1 can overcome this inhibitory activity, and consequently the Cdt1-MCM2-7 complex activates ORC/Cdc6 ATP-hydrolysis to promote helicase loading. While Cdc6 ATPase activity is known to facilitate Cdt1 release and MCM2-7 loading, we discovered that Orc1 ATP-hydrolysis is equally important in this process. Moreover, we found that Orc1/Cdc6 ATP-hydrolysis promotes the formation of the ORC/Cdc6/MCM2-7 (OCM) complex, which functions in MCM2-7 double-hexamer assembly. Importantly, CDK-dependent phosphorylation of ORC inhibits OCM establishment to ensure once per cell cycle replication. In summary, this work reveals multiple critical mechanisms that redefine our understanding of DNA licensing.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Complexos Multiproteicos/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação/genética , Western Blotting , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Quinases Ciclina-Dependentes/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Hidrólise , Modelos Biológicos , Complexos Multiproteicos/genética , Mutação , Complexo de Reconhecimento de Origem/genética , Fosforilação , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
6.
J Biol Chem ; 291(14): 7267-85, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26865637

RESUMO

Hexokinase 2 (Hxk2) fromSaccharomyces cerevisiaeis a bi-functional enzyme, being both a catalyst in the cytosol and an important regulator of the glucose repression signal in the nucleus. Despite considerable recent progress, little is known about the regulatory mechanism that controls nuclear Hxk2 association with theSUC2promoter chromatin and how this association is necessary forSUC2gene repression. Our data indicate that in theSUC2promoter context, Hxk2 functions through a variety of structurally unrelated factors, mainly the DNA-binding Mig1 and Mig2 repressors and the regulatory Snf1 and Reg1 factors. Hxk2 sustains the repressor complex architecture maintaining transcriptional repression at theSUC2gene. Using chromatin immunoprecipitation assays, we discovered that the Hxk2 in its open configuration, at low glucose conditions, leaves the repressor complex that induces its dissociation and promotesSUC2gene expression. In high glucose conditions, Hxk2 adopts a close conformation that promotes Hxk2 binding to the Mig1 protein and the reassembly of theSUC2repressor complex. Additional findings highlight the possibility that Hxk2 constitutes an intracellular glucose sensor that operates by changing its conformation in response to cytoplasmic glucose levels that regulate its interaction with Mig1 and thus its recruitment to the repressor complex of theSUC2promoter. Thus, our data indicate that Hxk2 is more intimately involved in gene regulation than previously thought.


Assuntos
Glucose/metabolismo , Hexoquinase/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Glucose/genética , Hexoquinase/genética , Complexos Multiproteicos/genética , Ligação Proteica , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , beta-Frutofuranosidase/biossíntese , beta-Frutofuranosidase/genética
7.
Nucleic Acids Res ; 43(21): 10238-50, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26338774

RESUMO

During G1-phase of the cell-cycle the replicative MCM2-7 helicase becomes loaded onto DNA into pre-replicative complexes (pre-RCs), resulting in MCM2-7 double-hexamers on DNA. In S-phase, Dbf4-dependent kinase (DDK) and cyclin-dependent-kinase (CDK) direct with the help of a large number of helicase-activation factors the assembly of a Cdc45-MCM2-7-GINS (CMG) complex. However, in the absence of S-phase kinases complex assembly is inhibited, which is unexpected, as the MCM2-7 double-hexamer represents a very large interaction surface. Currently it is unclear what mechanisms restricts complex assembly and how DDK can overcome this inhibition to promote CMG-assembly. We developed an advanced reconstituted-system to study helicase activation in-solution and discovered that individual factors like Sld3 and Sld2 can bind directly to the pre-RC, while Cdc45 cannot. When Sld3 and Sld2 were incubated together with the pre-RC, we observed that competitive interactions restrict complex assembly. DDK stabilizes the Sld3/Sld2-pre-RC complex, but the complex is only short-lived, indicating an anti-cooperative mechanism. Yet, a Sld3/Cdc45-pre-RC can form in the presence of DDK and the addition of Sld2 enhances complex stability. Our results indicate that helicase activation is regulated by competitive and cooperative interactions, which restrict illegitimate complex formation and direct limiting helicase-activation factors into pre-initiation complexes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Origem de Replicação , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/metabolismo , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Manutenção de Minicromossomo/química , Proteínas Nucleares/metabolismo
8.
Semin Cell Dev Biol ; 30: 104-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24637008

RESUMO

A central step in eukaryotic initiation of DNA replication is the loading of the helicase at replication origins, misregulation of this reaction leads to DNA damage and genome instability. Here we discuss how the helicase becomes recruited to origins and loaded into a double-hexamer around double-stranded DNA. We specifically describe the individual steps in complex assembly and explain how this process is regulated to maintain genome stability. Structural analysis of the helicase loader and the helicase has provided key insights into the process of double-hexamer formation. A structural comparison of the bacterial and eukaryotic system suggests a mechanism of helicase loading.


Assuntos
Proteínas de Manutenção de Minicromossomo/metabolismo , Multimerização Proteica , Animais , Replicação do DNA , Instabilidade Genômica , Humanos , Proteínas de Manutenção de Minicromossomo/química , Modelos Moleculares , Estrutura Quaternária de Proteína , Origem de Replicação
9.
Chromosoma ; 124(1): 13-26, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25308420

RESUMO

A crucial step during eukaryotic initiation of DNA replication is the correct loading and activation of the replicative DNA helicase, which ensures that each replication origin fires only once. Unregulated DNA helicase loading and activation, as it occurs in cancer, can cause severe DNA damage and genomic instability. The essential mini-chromosome maintenance proteins 2-7 (MCM2-7) represent the core of the eukaryotic replicative helicase that is loaded at DNA replication origins during G1-phase of the cell cycle. The MCM2-7 helicase activity, however, is only triggered during S-phase once the holo-helicase Cdc45-MCM2-7-GINS (CMG) has been formed. A large number of factors and several kinases interact and contribute to CMG formation and helicase activation, though the exact mechanisms remain unclear. Crucially, upon DNA damage, this reaction is temporarily halted to ensure genome integrity. Here, we review the current understanding of helicase activation; we focus on protein interactions during CMG formation, discuss structural changes during helicase activation, and outline similarities and differences of the prokaryotic and eukaryotic helicase activation process.


Assuntos
Ciclo Celular , Proteínas de Manutenção de Minicromossomo/metabolismo , Origem de Replicação/fisiologia , Ativação Enzimática , Eucariotos/enzimologia , Humanos
10.
Nucleic Acids Res ; 42(4): 2257-69, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24234446

RESUMO

The replicative mini-chromosome-maintenance 2-7 (MCM2-7) helicase is loaded in Saccharomyces cerevisiae and other eukaryotes as a head-to-head double-hexamer around origin DNA. At first, ORC/Cdc6 recruits with the help of Cdt1 a single MCM2-7 hexamer to form an 'initial' ORC/Cdc6/Cdt1/MCM2-7 complex. Then, on ATP hydrolysis and Cdt1 release, the 'initial' complex is transformed into an ORC/Cdc6/MCM2-7 (OCM) complex. However, it remains unclear how the OCM is subsequently converted into a MCM2-7 double-hexamer. Through analysis of MCM2-7 hexamer-interface mutants we discovered a complex competent for MCM2-7 dimerization. We demonstrate that these MCM2-7 mutants arrest during prereplicative complex (pre-RC) assembly after OCM formation, but before MCM2-7 double-hexamer assembly. Remarkably, only the OCM complex, but not the 'initial' ORC/Cdc6/Cdt1/MCM2-7 complex, is competent for MCM2-7 dimerization. The MCM2-7 dimer, in contrast to the MCM2-7 double-hexamer, interacts with ORC/Cdc6 and is salt-sensitive, classifying the arrested complex as a helicase-loading intermediate. Accordingly, we found that overexpression of the mutants cause cell-cycle arrest and dominant lethality. Our work identifies the OCM complex as competent for MCM2-7 dimerization, reveals MCM2-7 dimerization as a limiting step during pre-RC formation and defines critical mechanisms that explain how origins are licensed.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Componente 7 do Complexo de Manutenção de Minicromossomo/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Pontos de Checagem do Ciclo Celular , Proteínas de Ligação a DNA/metabolismo , Componente 7 do Complexo de Manutenção de Minicromossomo/química , Componente 7 do Complexo de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Dados de Sequência Molecular , Mutação , Multimerização Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
11.
Nucleic Acids Res ; 41(5): 3162-72, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23376927

RESUMO

The origin recognition complex (ORC) of Saccharomyces cerevisiae binds origin DNA and cooperates with Cdc6 and Cdt1 to load the replicative helicase MCM2-7 onto DNA. Helicase loading involves two MCM2-7 hexamers that assemble into a double hexamer around double-stranded DNA. This reaction requires ORC and Cdc6 ATPase activity, but it is unknown how these proteins control MCM2-7 double hexamer formation. We demonstrate that mutations in Cdc6 sensor-2 and Walker A motifs, which are predicted to affect ATP binding, influence the ORC-Cdc6 interaction and MCM2-7 recruitment. In contrast, a Cdc6 sensor-1 mutant affects MCM2-7 loading and Cdt1 release, similar as a Cdc6 Walker B ATPase mutant. Moreover, we show that Orc1 ATP hydrolysis is not involved in helicase loading or in releasing ORC from loaded MCM2-7. To determine whether Cdc6 regulates MCM2-7 double hexamer formation, we analysed complex assembly. We discovered that inhibition of Cdc6 ATPase restricts MCM2-7 association with origin DNA to a single hexamer, while active Cdc6 ATPase promotes recruitment of two MCM2-7 hexamer to origin DNA. Our findings illustrate how conserved Cdc6 AAA+ motifs modulate MCM2-7 recruitment, show that ATPase activity is required for MCM2-7 hexamer dimerization and demonstrate that MCM2-7 hexamers are recruited to origins in a consecutive process.


Assuntos
Proteínas de Ciclo Celular/química , Multimerização Proteica , Proteínas de Saccharomyces cerevisiae/química , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Substituição de Aminoácidos , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proteínas Cromossômicas não Histona/química , Replicação do DNA , DNA Fúngico/química , Proteínas de Ligação a DNA/química , Hidrólise , Componente 7 do Complexo de Manutenção de Minicromossomo , Mutagênese Sítio-Dirigida , Proteínas Nucleares/química , Complexo de Reconhecimento de Origem/antagonistas & inibidores , Complexo de Reconhecimento de Origem/química , Complexo de Reconhecimento de Origem/genética , Ligação Proteica , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética
12.
Biochem J ; 415(2): 233-9, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18588509

RESUMO

Human GK(beta) (pancreatic beta-cell glucokinase) is the main glucose-phosphorylating enzyme in pancreatic beta-cells. It shares several structural, catalytic and regulatory properties with Hxk2 (hexokinase 2) from Saccharomyces cerevisiae. In fact, it has been previously described that expression of GK(beta) in yeast could replace Hxk2 in the glucose signalling pathway of S. cerevisiae. In the present study we report that GK(beta) exerts its regulatory role by association with the yeast transcriptional repressor Mig1 (multicopy inhibitor of GAL gene expression 1); the presence of Mig1 allows GK(beta) to bind to the SUC2 (sucrose fermentation 2) promoter, helping in this way in the maintenance of the repression of the SUC2 gene under high-glucose conditions. Since a similar mechanism has been described for the yeast Hxk2, the findings of the present study suggest that the function of the regulatory domain present in these two proteins has been conserved throughout evolution. In addition, we report that GK(beta) is enriched in the yeast nucleus of high-glucose growing cells, whereas it shows a mitochondrial localization upon removal of the sugar. However, GK(beta) does not exit the nucleus in the absence of Mig1, suggesting that Mig1 regulates the nuclear exit of GK(beta) under low-glucose conditions. We also report that binding of GK(beta) to Mig1 allows the latter protein to be located at the mitochondrial network under low-glucose conditions.


Assuntos
Glucoquinase/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico/efeitos dos fármacos , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Glucoquinase/genética , Glucose/metabolismo , Glucose/farmacologia , Humanos , Microscopia de Fluorescência , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido
14.
Nat Struct Mol Biol ; 24(3): 316-324, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28191893

RESUMO

To initiate DNA replication, the origin recognition complex (ORC) and Cdc6 load an Mcm2-7 double hexamer onto DNA. Without ATP hydrolysis, ORC-Cdc6 recruits one Cdt1-bound Mcm2-7 hexamer, thus forming an ORC-Cdc6-Cdt1-Mcm2-7 (OCCM) helicase-loading intermediate. Here we report a 3.9-Å structure of Saccharomyces cerevisiae OCCM on DNA. Flexible Mcm2-7 winged-helix domains (WHDs) engage ORC-Cdc6. A three-domain Cdt1 configuration embraces Mcm2, Mcm4, and Mcm6, thus comprising nearly half of the hexamer. The Cdt1 C-terminal domain extends to the Mcm6 WHD, which binds the Orc4 WHD. DNA passes through the ORC-Cdc6 and Mcm2-7 rings. Origin DNA interaction is mediated by an α-helix within Orc4 and positively charged loops within Orc2 and Cdc6. The Mcm2-7 C-tier AAA+ ring is topologically closed by an Mcm5 loop that embraces Mcm2, but the N-tier-ring Mcm2-Mcm5 interface remains open. This structure suggests a loading mechanism of the first Cdt1-bound Mcm2-7 hexamer by ORC-Cdc6.


Assuntos
Proteínas de Ciclo Celular/química , Replicação do DNA , Proteínas de Ligação a DNA/química , Proteínas de Manutenção de Minicromossomo/química , Origem de Replicação , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestrutura , Microscopia Crioeletrônica , DNA Fúngico/química , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Espectrometria de Massas , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/ultraestrutura , Modelos Moleculares , Nucleotídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
15.
J Mol Biol ; 338(4): 657-67, 2004 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-15099735

RESUMO

Glucose is an essential nutrient, and a regulator of gene expression in eukaryotic cells. Here, a comparative, function-based genomic approach has been used to identify glucose regulatory elements and transduction pathways common to both yeast and mammalian cells. We have isolated a region in the promoter of the Saccharomyces cerevisiae hexose transporter gene HXT1 that conferred glucose sensitivity in yeast, when located upstream of the minimal CYC1 promoter. This element contained binding motifs for Rgt1, a transcriptional modulator involved in the yeast glucose-induction pathway, that were sufficient to elicit glucose responsiveness. The HXT1 regulatory element was then fused to the minimal cytomegalovirus promoter (HXT1-MIN) and inserted into an adenovirus for delivery to human fibroblasts, where it exhibited glucose-dependent transcriptional activation. Glucose action was mimicked by fructose and unrelated to glucose 6-P content, whilst non-metabolizable glucose analogues showed no effect. Activation of AMP kinase by 5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranosanide blocked glucose induction, revealing parallels with the yeast glucose-repressing pathway. In contrast, delivery of Rgt1 to fibroblasts did not modify HXT1-MIN responsiveness. Thus, elements of the S.cerevisiae HXT1 gene conserve glucose regulation in human fibroblasts equivalent to the metabolism-dependent, glucose-repressing pathway in yeast. These data suggest that the instructions carried within gene regulatory elements controlling nutrient regulation of gene expression have been conserved throughout evolution.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Fibroblastos/fisiologia , Glucose/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Elementos de Resposta , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Aminoimidazol Carboxamida/metabolismo , Animais , Células Cultivadas , Fibroblastos/citologia , Genes Reporter , Proteínas Facilitadoras de Transporte de Glucose , Humanos , Proteínas de Transporte de Monossacarídeos/genética , Oxirredução , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Regiões Promotoras Genéticas , Ribonucleotídeos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica
16.
Elife ; 42015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26305410

RESUMO

To initiate DNA replication, cells first load an MCM helicase double hexamer at origins in a reaction requiring ORC, Cdc6, and Cdt1, also called pre-replicative complex (pre-RC) assembly. The essential mechanistic role of Cdc6 ATP hydrolysis in this reaction is still incompletely understood. Here, we show that although Cdc6 ATP hydrolysis is essential to initiate DNA replication, it is not essential for MCM loading. Using purified proteins, an ATPase-defective Cdc6 mutant 'Cdc6-E224Q' promoted MCM loading on DNA. Cdc6-E224Q also promoted MCM binding at origins in vivo but cells remained blocked in G1-phase. If after loading MCM, Cdc6-E224Q was degraded, cells entered an apparently normal S-phase and replicated DNA, a phenotype seen with two additional Cdc6 ATPase-defective mutants. Cdc6 ATP hydrolysis is therefore required for Cdc6 disengagement from the pre-RC after helicase loading to advance subsequent steps in helicase activation in vivo.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Replicação do DNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Saccharomyces cerevisiae/fisiologia
17.
Nat Struct Mol Biol ; 20(8): 944-51, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23851460

RESUMO

In eukaryotes, the Cdt1-bound replicative helicase core MCM2-7 is loaded onto DNA by the ORC-Cdc6 ATPase to form a prereplicative complex (pre-RC) with an MCM2-7 double hexamer encircling DNA. Using purified components in the presence of ATP-γS, we have captured in vitro an intermediate in pre-RC assembly that contains a complex between the ORC-Cdc6 and Cdt1-MCM2-7 heteroheptamers called the OCCM. Cryo-EM studies of this 14-subunit complex reveal that the two separate heptameric complexes are engaged extensively, with the ORC-Cdc6 N-terminal AAA+ domains latching onto the C-terminal AAA+ motor domains of the MCM2-7 hexamer. The conformation of ORC-Cdc6 undergoes a concerted change into a right-handed spiral with helical symmetry that is identical to that of the DNA double helix. The resulting ORC-Cdc6 helicase loader shows a notable structural similarity to the replication factor C clamp loader, suggesting a conserved mechanism of action.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Proteínas de Ligação a DNA/química , Modelos Moleculares , Complexos Multiproteicos/química , Complexo de Reconhecimento de Origem/química , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Clonagem Molecular , Microscopia Crioeletrônica , Replicação do DNA/fisiologia , DNA Fúngico/química , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Processamento de Imagem Assistida por Computador , Imunoprecipitação , Mutagênese Sítio-Dirigida , Complexo de Reconhecimento de Origem/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Mitochondrion ; 12(3): 370-80, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22353369

RESUMO

Mig2 has been described as a transcriptional factor that in the absence of Mig1 protein is required for glucose repression of the SUC2 gene. Thus, until now, the main role assigned to Mig2 has been the functional redundancy to Mig1. In this study, we report that Mig2 has a double subcellular localization. As expected, in high-glucose conditions it is accumulated in the nucleus but in low-glucose conditions Mig2 has an unexpected mitochondrial localization and role in mitochondrial morphology. We describe that Mig2 physically interacts with the mitochondrial protein Ups1 in a glucose-dependent manner. We also show that Δmig2 mutant cells exhibit a fragmented network of mitochondrial tubules, a phenotype similarly observed in cells lacking Fzo1 and Ups1. Furthermore, Mig2 acts antagonistically with respect to the fission-promoting components, because mitochondrial aggregation induced by DNM1 deletion was rescued in the Δdnm1Δmig2 double mutant. Thus, our studies have revealed an additional role for Mig2 as a novel factor required for the maintenance of fusion-competent mitochondria in Saccharomyces cerevisiae and strongly suggest that Mig2 could be involved in the cross talk between the nucleus and the mitochondria through Ups1 to regulate mitochondrial morphology in a glucose dependent manner.


Assuntos
Núcleo Celular/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Mitocôndrias/metabolismo , Proteínas Repressoras/efeitos dos fármacos , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Glucose/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Repressoras/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA