RESUMO
A comprehensive phytochemical investigation of aerial parts obtained from Centaurea sicula L. led to the isolation of 14 terpenoids (1-14) and nine polyphenols (15-23). The sesquiterpenoid group (1-11) included three structural families, namely, elemanolides (1-6), eudesmanolides (7 and 8), and germacranolides (9-11) with four unreported secondary metabolites (5-8), whose structure has been determined by extensive spectroscopic analysis, including 1D/2D NMR, HR-MS, and chemical conversion. Moreover, an unprecedented alkaloid, named siculamide (24), was structurally characterized, and a possible biogenetic origin was postulated. Inspired by the traditional use of the plant and in the frame of ongoing research on compounds with potential activity on metabolic syndrome, all the isolated compounds were evaluated for their stimulation of glucose uptake, disclosing remarkable activity for dihydrocnicin (10) and the lignan salicifoliol (15).
Assuntos
Centaurea , Glucose , Componentes Aéreos da Planta , Componentes Aéreos da Planta/química , Centaurea/química , Estrutura Molecular , Glucose/metabolismo , Terpenos/química , Terpenos/isolamento & purificação , Terpenos/farmacologia , Polifenóis/química , Polifenóis/farmacologia , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Sesquiterpenos/isolamento & purificaçãoRESUMO
In the original publication [...].
RESUMO
Baccharis macraei Hook. & Arn (Asteraceae), commonly known as Vautro, is found in the coastal areas of central-southern Chile, including the industrial zone of Quintero-Puchuncaví, known for the contamination of its soils with heavy metals, which together with other factors generate abiotic stress in plant species, against which they present defensive mechanisms. For this reason, the objective was to evaluate the effect of abiotic stress generated by the proximity of B. macraei to the industrial complex by assessing the physiological and metabolic states reported by the extracts and compounds isolated from the species, as well as the photosynthetic capacity, metal content and production, and antioxidant activity and cytotoxicity against tumorigenic cell lines of the phytoconstituents. To this end, B. macraei was collected at two different distances from the industrial complex, observing that the closer the species is, the greater the concentration of copper in the soil, generating a decrease in the rate of electron transport in situ, but an increase in antioxidant activity with low cytotoxicity. This activity could be due to the presence of flavonoids such as Hispidulin, Cirsimaritina, and Isokaempferida, as well as monoterpenes, oxygenated and non-oxygenated sesquiterpenes identified in this study.
Assuntos
Antioxidantes , Baccharis , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Baccharis/química , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Linhagem Celular Tumoral , Chile , Fotossíntese/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificaçãoRESUMO
The majority of blood malignancies is incurable and has unforeseeable remitting-relapsing paths in response to different treatments. Cynaropicrin, a natural sesquiterpene lactone from the edible parts of the artichoke plant, has gained increased attention as a chemotherapeutic agent. In this study, we investigated the effects of cynaropicrin against multiple myeloma (MM) cells in vitro and assessed its in vivo effectiveness in a xenograft tumor zebrafish model. We showed that cynaropicrin exerted potent cytotoxicity against a panel of nine MM cell lines and two leukemia cell lines with AMO1 being the most sensitive cell line (IC50 = 1.8 ± 0.3 µM). Cynaropicrin (0.8, 1.9, 3.6 µM) dose-dependently reduced c-Myc expression and transcriptional activity in AMO1 cells that was associated with significant downregulation of STAT3, AKT, and ERK1/2. Cell cycle analysis showed that cynaropicrin treatment arrested AMO1 cells in the G2M phase along with an increase in the sub-G0G1 phase after 24 h. With prolonged treatment times, cells accumulated more in the sub-G0G1 phase, implying cell death. Using confocal microscopy, we revealed that cynaropicrin disrupted the microtubule network in U2OS cells stably expressing α-tubulin-GFP. Furthermore, we revealed that cynaropicrin promoted DNA damage in AMO1 cells leading to PAR polymer production by PARP1 hyperactivation, resulting in AIF translocation from the mitochondria to the nucleus and subsequently to a novel form of cell death, parthanatos. Finally, we demonstrated that cynaropicrin (5, 10 µM) significantly reduced tumor growth in a T-cell acute lymphoblastic leukemia (T-ALL) xenograft zebrafish model. Taken together, these results demonstrate that cynaropicrin causes potent inhibition of hematopoietic tumor cells in vitro and in vivo.
Assuntos
Mieloma Múltiplo , Parthanatos , Sesquiterpenos , Animais , Humanos , Tubulina (Proteína) , Peixe-Zebra/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Lactonas/farmacologia , Lactonas/uso terapêutico , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Linhagem Celular TumoralRESUMO
Plants produce a vast array of biomolecules with beneficial effects for human health. In this study, polyphenol and anthocyanin-rich extracts (PAE) from pigmented tubers of Solanum tuberosum L. varieties "Blue Star", "Magenta Love", and "Double Fun" in comparison with the more extensively studied "Vitelotte" were evaluated and compared for antiproliferative effects in human leukemia cells, and their phytochemical and genetic profiles were determined. In U937 cells, upon treatment with PAE, it was possible to reveal the expression of specific apoptotic players, such as caspase 8, 9, 3, and poly (ADP-ribose) polymerase (PARP), as well as the induction of monocyte and granulocyte differentiation. A liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) investigation revealed the presence of polyphenolic compounds in all the varieties of potatoes analyzed, among which caffeoyl and feruloyl quinic acid derivatives were the most abundant, as well as several acylated anthocyanins. Each pigmented variety was genotyped by DNA-based molecular markers, and flavonoid-related transcription factors were profiled in tubers in order to better characterize these outstanding resources and contribute to their exploitation in breeding. Interesting biological activities were observed for "Blue Star" and "Vitelotte" varieties with respect to the minor or no effect of the "Double Fun" variety.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Tubérculos/química , Polifenóis/química , Solanum tuberosum/química , Solanum tuberosum/genética , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Perfil Genético , Genótipo , Humanos , Compostos Fitoquímicos/química , Extratos Vegetais/química , Espectrometria de Massas por Ionização por ElectrosprayRESUMO
Ebola virus (EBOV) is a filovirus that causes a severe and rapidly progressing hemorrhagic syndrome; a recent epidemic illustrated the urgent need for novel therapeutic agents because no drugs have been approved for treatment of Ebola virus. A key contribution to the high lethality observed during EBOV outbreaks comes from viral evasion of the host antiviral innate immune response in which viral protein VP35 plays a crucial role, blocking interferon type I production, first by masking the viral double-stranded RNA (dsRNA) and preventing its detection by the pattern recognition receptor RIG-I. Aiming to identify inhibitors of the interaction of VP35 with the viral dsRNA, counteracting the VP35 viral innate immune evasion, we established a new methodology for high-yield recombinant VP35 (rVP35) expression and purification and a novel and robust fluorescence-based rVP35-RNA interaction assay ( Z' factor of 0.69). Taking advantage of such newly established methods, we screened a small library of Sardinian natural extracts, identifying Limonium morisianum as the most potent inhibitor extract. A bioguided fractionation led to the identification of myricetin as the component that can inhibit rVP35-dsRNA interaction with an IC50 value of 2.7 µM. Molecular docking studies showed that myricetin interacts with the highly conserved region of the VP35 RNA binding domain, laying the basis for further structural optimization of potent inhibitors of VP35-dsRNA interaction.
Assuntos
Antivirais/farmacologia , Flavonoides/farmacologia , Fluorescência , Extratos Vegetais/farmacologia , RNA de Cadeia Dupla/antagonistas & inibidores , RNA Viral/antagonistas & inibidores , Proteínas Virais Reguladoras e Acessórias/antagonistas & inibidores , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/virologia , Humanos , Simulação de Acoplamento Molecular , Plumbaginaceae/química , Conformação Proteica , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismoRESUMO
Prostate cancer is one of the most common forms of cancer in men, and research to find more effective and less toxic drugs has become necessary. In the frame of our ongoing program on traditionally used Salvia species from the Mediterranean Area, here we report the biological activities of Salvia aurea, S. judaica and S. viscosa essential oils against human prostate cancer cells (DU-145). The cell viability was measured by 3(4,5-dimethyl-thiazol-2-yl)2,5-diphenyl-tetrazolium bromide (MTT) test and lactate dehydrogenase (LDH) release was used to quantify necrosis cell death. Genomic DNA, caspase-3 activity, expression of cleaved caspase-9, B-cell lymphoma 2 (Bcl-2) and Bcl-2 associated X (Bax) proteins were analyzed in order to study the apoptotic process. The role of reactive oxygen species in cell death was also investigated. We found that the three essential oils, containing caryophyllene oxide as a main constituent, are capable of reducing the growth of human prostate cancer cells, activating an apoptotic process and increasing reactive oxygen species generation. These results suggest it could be profitable to further investigate the effects of these essential oils for their possible use as anticancer agents in prostate cancer, alone or in combination with chemotherapy agents.
Assuntos
Apoptose/efeitos dos fármacos , Medicamentos de Ervas Chinesas/administração & dosagem , Óleos Voláteis/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Apoptose/genética , Canfanos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Óleos Voláteis/química , Panax notoginseng , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Espécies Reativas de Oxigênio/metabolismo , Salvia/química , Salvia miltiorrhiza , Proteína X Associada a bcl-2/genéticaRESUMO
Heat stress affects the yield of medicinal plants and can reduce biomass and/or metabolite production. In order to evaluate the effect of heat-induced stress on the essential oil production in Mentha x piperita L. var. Mitcham (Mitcham mint) and Mentha arvensis var. piperascens Malinv. ex L. H. Bailey (Japanese mint), we studied the chemical composition of the oils of the two mint species under different heat shock stresses in growth chambers. The antibacterial activity of the essential oils was also evaluated; microscopic observation (fluorescence and electron transmission) was used to assess the effect of the tested samples on bacterial growth. The results obtained shed light on the mint essential oils composition and biological activity in relation to heat stress.
Assuntos
Antibacterianos/farmacologia , Mentha piperita/química , Mentha/química , Monoterpenos/farmacologia , Óleos Voláteis/farmacologia , Sesquiterpenos/farmacologia , Antibacterianos/isolamento & purificação , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/crescimento & desenvolvimento , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Temperatura Alta , Mentha/metabolismo , Mentha piperita/metabolismo , Testes de Sensibilidade Microbiana , Monoterpenos/classificação , Monoterpenos/isolamento & purificação , Óleos Voláteis/isolamento & purificação , Extratos Vegetais/química , Sesquiterpenos/classificação , Sesquiterpenos/isolamento & purificação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/crescimento & desenvolvimento , Estresse FisiológicoRESUMO
Phytochemical investigation of the apolar extract obtained from aerial parts of the Iranian endemic plant Echinophora platyloba DC (Apiaceae) resulted in the characterization of the polyacetylene fraction of this plant. This resulted to be composed of the known echinophorins A and B, embedding the very rare α-pyrone terminal, and of the new echinophorin D (3), including also three conjugated triple bonds. The chemical structures of these compounds were secured by detailed inspection of MS and 1D/2D NMR spectra. The isolated polyacteylenes were evaluated for their modulation of six thermo-TRP channels and they revealed a selective activity on TRPA1, an ion channel involved in the mediation of neuropathic and inflammatory pain. This is the first report on the activity of plant polyacetylenes on transient receptor potential (TRP) channels.
Assuntos
Apiaceae/química , Poli-Inos/química , Poli-Inos/farmacologia , Canal de Cátion TRPA1/antagonistas & inibidores , Células HEK293 , Humanos , Irã (Geográfico) , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Canal de Cátion TRPA1/metabolismoRESUMO
Phytochemical investigation of the aerial parts of the Tunisian plant Daucus virgatus led to the isolation of eight new germacranolides named daucovirgolides A-H (1-8). The stereostructures of these sesquiterpene lactones, decorated by either one or two angeloyl groups, have been determined by a combination of MS, NMR spectroscopy, chemical derivatization, and comparison of experimental electronic circular dichroism curves with TDDFT-predicted data. Daucovirgolide G (7) proved to be the single member of this family to possess a marked inhibitory activity (92% at 50 µg/mL) on the development of Plasmodium early sporogonic stages, the nonpathogenic transmissible stages of malaria parasites, devoid of general cytotoxicity. The selective activity of daucovirgolide G points to the existence of strict structural requirements for this transmission-blocking activity and therefore of a well-defined, although yet unidentified, biological target.
Assuntos
Antimaláricos/isolamento & purificação , Antimaláricos/farmacologia , Apiaceae/química , Componentes Aéreos da Planta/química , Sesquiterpenos de Germacrano/isolamento & purificação , Sesquiterpenos de Germacrano/farmacologia , Antimaláricos/química , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Plasmodium/efeitos dos fármacos , Sesquiterpenos de Germacrano/química , TunísiaRESUMO
Plants of the genus Zingiber (Family Zingiberaceae) are widely used throughout the world as food and medicinal plants. They represent very popular herbal remedies in various traditional healing systems; in particular, rhizome of Zingiber spp. plants has a long history of ethnobotanical uses because of a plethora of curative properties. Antimicrobial activity of rhizome essential oil has been extensively confirmed in vitro and attributed to its chemical components, mainly consisting of monoterpene and sesquiterpene hydrocarbons such as α-zingiberene, ar-curcumene, ß-bisabolene and ß-sesquiphellandrene. In addition, gingerols have been identified as the major active components in the fresh rhizome, whereas shogaols, dehydrated gingerol derivatives, are the predominant pungent constituents in dried rhizome. Zingiber spp. may thus represent a promising and innovative source of natural alternatives to chemical food preservatives. This approach would meet the increasing concern of consumers aware of the potential health risks associated with the conventional antimicrobial agents in food. This narrative review aims at providing a literature overview on Zingiber spp. plants, their cultivation, traditional uses, phytochemical constituents and biological activities.
Assuntos
Compostos Fitoquímicos/química , Zingiberaceae/química , Conservantes de Alimentos/química , Óleos Voláteis/químicaRESUMO
Transient receptor potential channels and cannabinoid receptors are deputed to the regulation of sensory, homeostatic, and inflammatory events in the human organism. Therefore, their modulation promises to have relevant applications in important therapeutic areas such as inflammation, pain, and cancer. This review summarizes the contribution of marine research in this relatively young field, highlighting the potential of the chemodiversity carried by marine natural products in the discovery of new ligands.
Assuntos
Produtos Biológicos/farmacologia , Receptores de Canabinoides/efeitos dos fármacos , Canais de Potencial de Receptor Transitório/efeitos dos fármacos , Animais , Antozoários/química , Organismos Aquáticos , Cianobactérias/química , Fungos/química , Humanos , Poríferos/químicaRESUMO
Lichens are valuable natural resources used for centuries throughout the world as medicine, food, fodder, perfume, spices and dyes, as well as for other miscellaneous purposes. This study investigates the antiproliferative, antibacterial and antifungal activity of the acetone extract of the lichen Xanthoria parietina (Linnaeus) Theodor Fries and its major secondary metabolite, parietin. The extract and parietin were tested for antimicrobial activity against nine American Type Culture Collection standard and clinically isolated bacterial strains, and three fungal strains. Both showed strong antibacterial activity against all bacterial strains and matched clinical isolates, particularly against Staphylococcus aureus from standard and clinical sources. Among the fungi tested, Rhizoctonia solani was the most sensitive. The antiproliferative effects of the extract and parietin were also investigated in human breast cancer cells. The extract inhibited proliferation and induced apoptosis, both effects being accompanied by modulation of expression of cell cycle regulating genes such as p16, p27, cyclin D1 and cyclin A. It also mediated apoptosis by activating extrinsic and intrinsic cell death pathways, modulating Tumor Necrosis Factor-related apoptosis-inducing ligand (TRAIL) and B-cell lymphoma 2 (Bcl-2), and inducing Bcl-2-associated agonist of cell death (BAD) phosphorylation. Our results indicate that Xanthoria parietina is a major potential source of antimicrobial and anticancer substances.
Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Emodina/análogos & derivados , Líquens/química , Extratos Vegetais/farmacologia , Antibacterianos/química , Antifúngicos/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Emodina/química , Emodina/farmacologia , Feminino , Humanos , Células MCF-7 , Extratos Vegetais/química , Rhizoctonia/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacosRESUMO
Cardiovascular diseases (CVDs) remain a leading global cause of morbidity and mortality. These diseases have a multifaceted nature being influenced by a multitude of biochemical, genetic, environmental, and behavioral factors. Epigenetic modifications have a crucial role in the onset and progression of CVD. Epigenetics, which regulates gene activity without altering the DNA's primary structure, can modulate cardiovascular homeostasis through DNA methylation, histone modification, and non-coding RNA regulation. The effects of environmental stimuli on CVD are mediated by epigenetic changes, which can be reversible and, hence, are susceptible to pharmacological interventions. This represents an opportunity to prevent diseases by targeting harmful epigenetic modifications. Factors such as high-fat diets or nutrient deficiencies can influence epigenetic enzymes, affecting fetal growth, metabolism, oxidative stress, inflammation, and atherosclerosis. Recent studies have shown that plant-derived bioactive compounds can modulate epigenetic regulators and inflammatory responses, contributing to the cardioprotective effects of diets. Understanding these nutriepigenetic effects and their reversibility is crucial for developing effective interventions to combat CVD. This review delves into the general mechanisms of epigenetics, its regulatory roles in CVD, and the potential of epigenetics as a CVD therapeutic strategy. It also examines the role of epigenetic natural compounds (ENCs) in CVD and their potential as intervention tools for prevention and therapy.
Assuntos
Doenças Cardiovasculares , Metilação de DNA , Epigênese Genética , Epigênese Genética/efeitos dos fármacos , Humanos , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/genética , Metilação de DNA/efeitos dos fármacos , Produtos Biológicos/uso terapêutico , Produtos Biológicos/farmacologia , AnimaisRESUMO
The purple carrot cultivar 'Purple Sun' (Daucus carota L.) is characterized by a relevant content of phenolic compounds and anthocyanins, which may play an important role in reducing the risk of chronic diseases and in the treatment of metabolic syndrome. In the present study, the genetic diversity, phytochemical composition, and bioactivities of this outstanding variety were studied for the first time. Genetic analysis by molecular markers estimated the level of genetic purity of this carrot cultivar, whose purple-pigmented roots were used for obtaining the purple carrot ethanol extract (PCE). With the aim to identify specialized metabolites potentially responsible for the bioactivities, the analysis of the metabolite profile of PCE by LC-ESI/LTQ Orbitrap/MS/MS was carried out. LC-ESI/HRMS analysis allowed the assignment of twenty-eight compounds, putatively identified as isocitric acid (1), phenolic acid derivatives (2 and 6), hydroxycinnamic acid derivatives (9, 10, 12-14, 16, 17, 19, 22, and 23), anthocyanins (3-5, 7, 8, 11, and 18), flavanonols (15 and 21), flavonols (20 and 24), oxylipins (25, 26, and 28), and the sesquiterpene 11-acetyloxytorilolone (27); compound 26, corresponding to the primary metabolite trihydroxyoctanoic acid (TriHOME), was the most abundant compound in the LC-ESI/HRMS analysis of the PCE, and hydroxycinnamic acid derivatives followed by anthocyanins were the two most represented groups. The antioxidant activity of PCE, expressed in terms of reactive oxygen species (ROS) level and antioxidant enzymes activity, and its pro-metabolic effect were evaluated. Moreover, the antibacterial activity on Gram (-) and (+) bacterial strains was investigated. An increase in the activity of antioxidant enzymes (SOD, CAT, and GPx), reaching a maximum at 0.5 mg/mL of PCE with a plateau at higher PCE concentrations (1.25, 2.5, and 5.0 mg/mL), was observed. PCE induced an initial decrease in ROS levels at 0.1 and 0.25 mg/mL concentrations, reaching the ROS levels of control at 0.5 mg/mL of PCE with a plateau at higher PCE concentrations (1.25, 2.5, and 5.0 mg/mL). Moreover, significant antioxidant and pro-metabolic effects of PCE on myoblasts were shown by a reduction in ROS content and an increase in ATP production linked to the promotion of mitochondrial respiration. Finally, the bacteriostatic activity of PCE was shown on the different bacterial strains tested, while the bactericidal action of PCE was exclusively observed against the Gram (+) Staphylococcus aureus. The bioactivities of PCE were also investigated from cellular and molecular points of view in colon and hematological cancer cells. The results showed that PCE induces proliferative arrest and modulates the expression of important cell-cycle regulators. For all these health-promoting effects, also supported by initial computational predictions, 'Purple Sun' is a promising functional food and an optimal candidate for pharmaceutical and/or nutraceutical preparations.
Assuntos
Antioxidantes , Daucus carota , Compostos Fitoquímicos , Extratos Vegetais , Daucus carota/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Extratos Vegetais/farmacologia , Antioxidantes/farmacologia , Antioxidantes/análise , Antocianinas/farmacologia , Antocianinas/análise , Espectrometria de Massas em Tandem , Fenóis/análise , Fenóis/farmacologia , Raízes de Plantas/químicaRESUMO
Natural products (NPs), broadly defined as chemicals produced by living organisms including microbes, marine organisms, animals, fungi and plants, are widely used as therapeutic agents for treating diseases and maintaining health and "wellness" [...].
Assuntos
Produtos Biológicos , Animais , Humanos , Produtos Biológicos/uso terapêutico , Fungos/química , Organismos Aquáticos/químicaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Prostate cancer originates from cells inside a gland, which begin to grow out of control. In the world, prostate cancer is the most common cancer in the male population. New therapeutic strategies are needed for this tumor which still has a high mortality. A. arborescens leaves and aerial parts have various ethnopharmacological uses such as anti-spasmodic, and their decoctions were used to resolve urticaria, neuralgia and several lung diseases. Often this species has been also used to treat different inflammatory-related diseases such as cancer. AIM OF THE STUDY: In a continuation of our research on essential oils from medicinal plants, we have selected, two essential oils from Artemisia arborescens L. (Compositae), an aromatic shrub widely used in traditional medicine. We evaluated their pro-apototic effect on androgen-sensitive (LNCaP) and androgen-insensitive (DU-145) human prostate cancer cells. In this study, we also evaluated the anti-Signal transducer and transcription factor 3 (STAT-3) activity of both essential oils in the human prostate cancer cell lines, and the treatment with Tumor necrosis factor (TNF)-Related Apoptosis (TRAIL). MATERIALS AND METHODS: The cells were exposed to essential oils for 72 h and cell viability and cell membrane integrity were evaluated. Genomic DNA and the activity of caspase-3 was tested to confirm the cell death for apoptosis. Western blot analysis was employed to evaluate the expression of Bcl-2, Bax, cleaved caspase-3, cleaved caspase-9, Hsp70, STAT-3 and SOD proteins. Assays to evaluate reactive oxygen species (ROS) and GSH levels were also performed. RESULTS: The results showed the capacity of two essential oils to activate an apoptotic process increasing the inhibition of Hsp70 and STAT-3 protein expression. In addition, our natural products sensitize LNCaP cells to Tumor necrosis factor (TNF)-Related Apoptosis (TRAIL)-induced apoptosis. CONCLUSIONS: In summary, our study provides a further contribution to the hypothesis of the use of essential oils, from traditional medicinal plants, for the treatment of tumors, and suggests that the combination of our samples with other anti-prostate cancer therapies could be used to affect prostate cancer.
Assuntos
Artemisia , Óleos Voláteis , Neoplasias da Próstata , Masculino , Humanos , Caspase 3/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Androgênios/farmacologia , Apoptose , Neoplasias da Próstata/metabolismo , Fatores de Necrose Tumoral/farmacologia , Fatores de Necrose Tumoral/uso terapêutico , Linhagem Celular TumoralRESUMO
The aim of this study was to deepen our knowledge on the heritage and traditional uses of some medicinal plants of the Cilento, Vallo di Diano and Alburni National Park (Salerno province) and to evaluate their productive potential, in order to increase possible uses to recover and enhance the territory. Biometric surveys and biomass evaluation were carried out. Two types of aqueous extract were prepared using air-dried samples of six harvested species and tested for anti-germination activity on Lepidium sativum L. Hydrolates were recovered via steam distillation from aromatic species and the chemical-physical characteristics were determined. Historical evidence of industrial activity was collected in the territory of Sanza on Monte Cervati, where lavender essential oil has been distilled in the past century, and characterization of the essential oil components was carried out. The ethnobotanical uses detected mainly concerned traditional medicine and nutritional, ritual, or religious uses. The experimental results highlight that spontaneous medicinal plants could become potential sources of local economic development, with uses not only in the phytotherapeutic sector, but also in others, such as food and agriculture for weed control. Moreover, the evidence derived from industrial archeology could represent a further driving force for the enhancement of the territory's resources.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Chamomile (M. chamomilla L.) is an herbaceous plant from family Astereaceae, that has a long history of use in traditional medicine. It has been used as herbal remedies for thousands of years to treat several diseases, including infections, neuropsychiatric, respiratory, gastrointestinal, and liver disorders. Chronic inflammation is involved in the pathogenesis of most infectious and non-infectious diseases and macrophages are considered the major cellular players that drive disease initiation and maintenance. AIM OF THE STUDY: The aim of this study was to evaluate the variation in the chemical profile of the essential oil of M. chamomilla plants collected in three experimental field sites in the Molise region. Additionally, we evaluated the pharmacological mechanism behind the anti-inflammatory effect of M. chamomilla essential oils. MATERIAL AND METHODS: Three essential oils (called GC1, GC2 and GC3) were extracted from aerial parts of M. chamomilla by hydrodistillation and chemical composition was analyzed by gas chromatography-mass spectrometry (GC-MS). The essential oils were tested for their ability to modulate pro-inflammatory murine macrophages and human peripheral blood mononuclear cells (PBMCs) functions. RESULTS: The chemical analysis of the samples revealed the presence of a high content of the oxygenated sesquiterpenes that represented more than the half of the entire oils. GC1, GC2 and GC3 essential oils significantly attenuated LPS/IFN-γ-induced inflammation by reducing M1 polarization. In details, they showed significant anti-inflammatory property by inhibiting NO, TNF-α and IL-6 production. These effects were correlated to a suppression of LPS-mediated p65 activation, the critical transactivation subunit for NF-κB transcription factor. Oxidative stress may trigger macrophages activation and elicit strong immune responses. Our study demonstrated that GC1, GC2 and GC3 were highly effective at increasing GCL and HMOX-1 anti-oxidant enzymes expression leading to the rapid scavenging of ROS. The antioxidant activity of these oils was explained throughout the activation of NRF2 signaling pathway. Next, we demonstrated that essential oils were able to reduce CD4+ T cell activation which are also involved in inflammatory processes. CONCLUSIONS: Our data describe for the first time that chamomile essential oils exerted their anti-inflammatory and antioxidant activity by modulating macrophages and CD4+ T cells-mediate immune response.
Assuntos
Óleos Voláteis , Humanos , Animais , Camundongos , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Óleos Voláteis/análise , Camomila , Leucócitos Mononucleares , Antioxidantes/farmacologia , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Macrófagos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/análise , Inflamação/tratamento farmacológicoRESUMO
A phytochemical investigation of acetone and chloroform extracts of the aerial parts of Onopordum cynarocephalum Boiss. et Blanche was carried out. It led to the isolation of two new sesquiterpenes, the elemane aldehyde (2) and the eudesmane (11), together with 15 known compounds: two lignans (1 and 15) and 13 sesquiterpenes (3-10, 12-14, 16, 17). The structures were elucidated by spectroscopic analyses, especially 1D and 2D NMR spectra. The anti-growth effect against three human melanoma cell lines, M14, A375, and A2058, of the different extracts and compounds of O. cynarocephalum was also investigated. Among them, the chloroform extract exhibited the strongest biological activity, while the most active compounds were the lignan arctigenin (1), and the sesquiterpenes, compounds 3, 5, and 6 belonging to the elemane type, and 7 belonging to the eudesmane type. Our data also demonstrate that acetone and chloroform extracts induce, in the A375 cell line, apoptotic cell death that could be related to an overall action of the compounds present, but in particular to the lignans arctigenin (1) and the sesquiterpenes compounds 3-8 and 16. In fact, these molecules were able to induce a high DNA fragmentation, correlated to a significant increase of the caspase-3 enzyme activity. Furthermore, apoptosis appears to be mediated, at least in part, via PTEN activity and the inhibition of Hsp70 expression.