Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
Appl Environ Microbiol ; 79(5): 1639-45, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23275516

RESUMO

Prothioconazole is a new triazolinthione fungicide used in agriculture. We have used Candida albicans CYP51 (CaCYP51) to investigate the in vitro activity of prothioconazole and to consider the use of such compounds in the medical arena. Treatment of C. albicans cells with prothioconazole, prothioconazole-desthio, and voriconazole resulted in CYP51 inhibition, as evidenced by the accumulation of 14α-methylated sterol substrates (lanosterol and eburicol) and the depletion of ergosterol. We then compared the inhibitor binding properties of prothioconazole, prothioconazole-desthio, and voriconazole with CaCYP51. We observed that prothioconazole-desthio and voriconazole bind noncompetitively to CaCYP51 in the expected manner of azole antifungals (with type II inhibitors binding to heme as the sixth ligand), while prothioconazole binds competitively and does not exhibit classic inhibitor binding spectra. Inhibition of CaCYP51 activity in a cell-free assay demonstrated that prothioconazole-desthio is active, whereas prothioconazole does not inhibit CYP51 activity. Extracts from C. albicans grown in the presence of prothioconazole were found to contain prothioconazole-desthio. We conclude that the antifungal action of prothioconazole can be attributed to prothioconazole-desthio.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/enzimologia , Inibidores Enzimáticos/farmacologia , Esterol 14-Desmetilase/metabolismo , Triazóis/farmacologia , Antifúngicos/metabolismo , Inibidores Enzimáticos/metabolismo , Ligação Proteica , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Triazóis/metabolismo , Voriconazol
3.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1134-1135: 121807, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31783250

RESUMO

Tetracyclines (TCs) are important broad spectrum antibiotics which are active against gram-positive and gram-negative bacteria. TCs readily form epimers, especially under weakly acidic conditions. The epimers are reported to have different antibacterial and toxicological properties and pose a significant challenge for selective bioanalysis, being isobaric with the parent drug and possessing very similar physicochemical properties. During the development, validation and use of bioanalytical methods for minocycline in plasma, urine and renal dialysate there were two unexpected findings. The first was that the analyte and the internal standard, tetracycline, were found to be unexpectedly stable and resistant towards epimerisation in the presence of the deproteinising agent, trichloroacetic acid (TCA). The second was that keeping minocycline spiked dialysate in a freezer led to significant losses which were worse for low concentrations at lower storage temperatures. Investigations into the stability of tetracycline, minocycline, omadacycline and tigecycline in aqueous acidic solutions, under typical analytical conditions, revealed that TCA acts as a stabiliser with respect to both epimerisation and other degradation pathways for these TCs. This gives the rarely used TCA a significant advantage over the commonly used deproteinising agents such as acetonitrile when analysing TCs. Studies of the recoveries of tetracycline and tigecycline from frozen renal dialysis buffer demonstrated similar losses to those for minocycline. These were assigned to deposition of insoluble Mg2+ or Ca2+ complexes on freezing, as pre-storage treatment of the samples by incubation in EDTA coated tubes at room temperature prevented the losses. Minocycline was stable in renal dialysis buffer samples when frozen, for up to ca. 3 months, when this treatment was employed. The TCs were analysed using LC-MS/MS based methods developed in-house using the assay that was originally developed for minocycline in plasma, urine and dialysate as a template.


Assuntos
Metais/química , Tetraciclinas , Cromatografia Líquida , Temperatura Baixa , Estabilidade de Medicamentos , Humanos , Isomerismo , Diálise Renal , Manejo de Espécimes , Espectrometria de Massas em Tandem , Tetraciclinas/sangue , Tetraciclinas/química , Tetraciclinas/urina , Ácido Tricloroacético/química
4.
J Pharm Biomed Anal ; 169: 90-98, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30844627

RESUMO

New treatments are urgently required to treat infections caused by multi-drug resistant Acinetobacter baumanni,. To address this need, a new formulation of Minocin®, (minocycline for injection) has been developed that allows for higher doses of minocycline to be administered. Phase 1 clinical trials were conducted in healthy volunteers to assess the safety and pharmacokinetics (PK) of this new formulation at higher doses. In order to generate PK data, novel, selective and simple HPLC-MS/MS based assays were developed and validated for the determination of minocycline (MC) in human plasma and urine. The respective working ranges were 0.05 to 30 mg/L and 0.1 to 30 mg/L. Removal of endogenous proteins with trichloroacetic acid was used as a simple means of extracting MC from the samples. An analogue, tetracycline was used as the internal standard (IS). Chromatographic separation, including that of MC from its 4-epimer (4-EMC), was achieved on a Waters XBridge BEH C18 column (50 x 4.6 mm ID, 5 µm) with gradient elution. The mobile phases comprised water containing 5 mM ammonium formate at a pH of 2.5, and methanol containing 5 mM ammonium formate. The internal standard (IS) was tetracycline, a structural analogue of minocycline. The methods were fully validated and met regulatory acceptance criteria for intra-run and inter-run accuracy and precision, carryover, dilution integrity and matrix effects. Mean extraction recoveries ranged between 64.3% and 84.6% for MC and 64.3% for the IS. There was no significant ion suppression or enhancement for MC or the IS. The validated assays were successfully applied to 1423 plasma and 689 urine samples from a Phase 1 clinical study. There was no evidence of instability, or significant interconversion between MC and 4-EMC, in stored clinical samples, spiked plasma and urine samples, or their extracts, under various test conditions.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Minociclina/sangue , Minociclina/urina , Plasma/química , Espectrometria de Massas em Tandem/métodos , Urina/química , Humanos , Limite de Detecção , Padrões de Referência , Reprodutibilidade dos Testes , Tetraciclina/sangue , Tetraciclina/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA