Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1573(1): 21-5, 2002 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-12383937

RESUMO

In this work, we verified that yeast cells deleted in ZRT1 were not capable of transporting cadmium, suggesting that the transport of this metal into the cell would be carried out through this zinc transporter. On the other hand, cadmium absorption shown by a Deltagsh1 strain (a mutant not able of synthesizing glutathione) was twofold higher than in the control strain. Moreover, the deletion of YCF1 (which encodes a vacuolar glutathione S-conjugate pump) impaired the transport of this metal significantly. Using a mutant strain deficient in YAP1, which codifies a transcription factor that controls the expression of both GSH1 and YCF1, we also observed a twofold increase in cadmium uptake, the same behavior shown by Deltagsh1 cells. Cadmium is compartmentalized in vacuoles through the Ycf1 transporter, in the form of a bis-glutathionato-cadmium complex. We propose that gsh1 cells are unable to form the Cd-GS(2) complex, while ycf1 cells would accumulate high levels of this complex in the cytoplasm. In face of these results we raised the hypothesis that Cd-GS(2) complex controls cadmium uptake through the Zrt1 protein.


Assuntos
Cádmio/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Cádmio/química , Proteínas de Transporte de Cátions/metabolismo , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica , Glutationa/química , Glutationa/metabolismo , Mutação , Oxirredução , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrofotometria Atômica
2.
Environ Toxicol Pharmacol ; 20(3): 383-9, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21783616

RESUMO

In a previous paper, we demonstrated that the cytoplasmic level of glutathione-cadmium complex affects cadmium absorption by Saccharomyces cerevisiae, a usual eukaryotic cell model for studies of stress response. Furthermore, it was also observed that the absorption of this non-essential metal seems to be achieved by Zrt1, a zinc transporter of high affinity. Looking a little further into the control mechanism, we have verified that the deficiency in Ace1 impaired cadmium transport significantly. Ace1 is a transcription factor that activates the expression of CUP1, which encodes the S. cerevisiae metallothionein. On the other hand, the deficiency in the transcription factor Yap1 produced a two-fold increase in cadmium uptake. Cells lacking Yap1 showed low levels of glutathione, which could explain their higher capacity of absorbing cadmium. However, the mutant strain Ace1 deficient exhibited considerable amounts of glutathione. By using RT-PCR analysis, we observed that the lack of Yap1 activates the expression of both CUP1 and ZRT1, while the lack of Ace1 inhibited significantly the expression of these genes. Thus, metallothionein seems also to participate in the regulation of cadmium transport by controlling the expression of ZRT1. We propose that, at low levels of Cup1, the cytoplasmic concentration of essential metals, such as zinc, in free form (not complexated), increases, inhibiting ZRT1 expression. In contrast, at high levels of Cup1, the concentration of these metals falls, inducing ZRT1 expression and favoring cadmium absorption. These results confirm the involvement of zinc transport system with cadmium transport.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA