Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Acta Oncol ; 58(10): 1352-1357, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31241387

RESUMO

Purpose: A 1.5 T MR Linac (MRL) has recently become available. MRL treatment workflows (WF) include online plan adaptation based on daily MR images (MRI). This study reports initial clinical experiences after five months of use in terms of patient compliance, cases, WF timings, and dosimetric accuracy. Method and materials: Two different WF were used dependent on the clinical situation of the day; Adapt To Position WF (ATP) where the reference plan position is adjusted rigidly to match the position of the targets and the OARs, and Adapt To Shape WF (ATS), where a new plan is created to match the anatomy of the day, using deformable image registration. Both WFs included three 3D MRI scans for plan adaptation, verification before beam on, and validation during IMRT delivery. Patient compliance and WF timings were recorded. Accuracy in dose delivery was assessed using a cylindrical diode phantom. Results: Nineteen patients have completed their treatment receiving a total of 176 fractions. Cases vary from prostate treatments (60Gy/20F) to SBRT treatments of lymph nodes (45 Gy/3F) and castration by ovarian irradiation (15 Gy/3F). The median session time (patient in to patient out) for 127 ATPs was 26 (21-78) min, four fractions lasted more than 45 min due to additional plan adaptation. For the 49 ATSs a median time of 12 (1-24) min was used for contouring resulting in a total median session time of 42 (29-91) min. Three SBRT fractions lasted more than an hour. The time on the MRL couch was well tolerated by the patients. The median gamma pass rate (2 mm,2% global max) for the adapted plans was 99.2 (93.4-100)%, showing good agreement between planned and delivered dose. Conclusion: MRL treatments, including daily MRIs, plan adaptation, and accurate dose delivery, are possible within a clinically acceptable timeframe and well tolerated by the patients.


Assuntos
Imageamento por Ressonância Magnética/métodos , Aceleradores de Partículas , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Castração/instrumentação , Castração/métodos , Estudos de Coortes , Estudos de Viabilidade , Feminino , Humanos , Linfonodos/diagnóstico por imagem , Linfonodos/efeitos da radiação , Metástase Linfática/diagnóstico por imagem , Metástase Linfática/radioterapia , Imageamento por Ressonância Magnética/instrumentação , Masculino , Pessoa de Meia-Idade , Ovário/diagnóstico por imagem , Ovário/efeitos da radiação , Cooperação do Paciente/estatística & dados numéricos , Imagens de Fantasmas , Próstata/diagnóstico por imagem , Próstata/efeitos da radiação , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Radiometria , Radiocirurgia/instrumentação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação , Fatores de Tempo , Resultado do Tratamento
2.
Phys Eng Sci Med ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954381

RESUMO

A fundamental parameter to evaluate the beam delivery precision and stability on a clinical linear accelerator (linac) is the focal spot position (FSP) measured relative to the collimator axis of the radiation head. The aims of this work were to evaluate comprehensive data on FSP acquired on linacs in clinical use and to establish the ability of alternative phantoms to detect effects on patient plan delivery related to FSP. FSP measurements were conducted using a rigid phantom holding two ball-bearings at two different distances from the radiation source. Images of these ball-bearings were acquired using the electronic portal imaging device (EPID) integrated with each linac. Machine QA was assessed using a radiation head-mounted PTW STARCHECK phantom. Patient plan QA was investigated using the SNC ArcCHECK phantom positioned on the treatment couch, irradiated with VMAT plans across a complete 360° gantry rotation and three X-ray energies. This study covered eight Elekta linacs, including those with 6 MV, 18 MV, and 6 MV flattening-filter-free (FFF) beams. The largest range in the FSP was found for 6 MV FFF. The FSP of one linac, retrofitted with 6 MV FFF, displayed substantial differences in FSP compared to 6 MV FFF beams on other linacs, which all had FSP ranges less than 0.50 mm and 0.25 mm in the lateral and longitudinal directions, respectively. The PTW STARCHECK phantom proved effective in characterising the FSP, while the SNC ArcCHECK measurements could not discern FSP-related features. Minor variations in FSP may be attributed to adjustments in linac parameters, component replacements necessary for beam delivery, and the wear and tear of various linac components, including the magnetron and gun filament. Consideration should be given to the ability of any particular phantom to detect a subsequent impact on the accuracy of patient plan delivery.

3.
Phys Med Biol ; 67(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34933298

RESUMO

Objective. The objective of this study was to separately quantify the stability of the megavoltage imager (MVI) and radiation head of an Elekta Unity MRL, throughout full gantry rotation.Approach. A ball-bearing (BB) phantom was attached to the radiation head of the Unity, while a single BB was placed at isocentre. Images were acquired during rotation, using the MVI. These images were processed using an in-house developed MATLAB program to reduce the errors resulted by noise, and the positions of the BBs in the images were analysed to extract MVI and radiation head sag data.Main results. The results returned by this method showed reproducibility, with a mean standard deviation of 7µm for the position of BBs across all gantry angles. The radiation head was found to sag throughout rotation, with a maximum course of movement of 0.59 mm. The sag pattern was stable over a period greater than a year but showed some dependence on gantry rotation direction.Significance. As MRL is a relatively new system, it is promising to have data supporting the high level of precision on one Elekta Unity machine. Isolating and quantifying the sources of uncertainty in radiation delivery may allow more sophisticated analysis of how the system performance may be improved.


Assuntos
Movimento , Aceleradores de Partículas , Imagens de Fantasmas , Reprodutibilidade dos Testes , Rotação
4.
Phys Med Biol ; 66(4): 045034, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33321475

RESUMO

The clinical introduction of hybrid magnetic resonance (MR) guided radiotherapy (RT) delivery systems has led to the need to validate the end-to-end dose delivery performance on such machines. In the current study, an MR visible phantom was developed and used to test the spatial deviation between planned and delivered dose at two 1.5 T MR linear accelerator (MR linac) systems, including pre-treatment imaging, dose planning, online imaging, image registration, plan adaptation, and dose delivery. The phantom consisted of 3D printed plastic and MR visible silicone rubber. It was designed to minimise air gaps close to the radiochromic film used as a dosimeter. Furthermore, the phantom was designed to allow submillimetre, reproducible positioning of the film in the phantom. At both MR linac systems, 54 complete adaptive, MR guided RT workflow sessions were performed. To test the dose delivery performance of the MR linac systems in various adaptive RT (ART) scenarios, the sessions comprised a range of systematic positional shifts of the phantom and imaging or plan adaptation conditions. In each workflow session, the positional translation between the film and the adaptive planned dose was determined. The results showed that the accuracy of the MR linac systems was between 0.1 and 0.9 mm depending on direction. The highest mean deviance observed was in the posterior-anterior direction, and the direction of the error was consistent between centres. The precision of the systems was related to whether the workflow utilized the internal image registration algorithm of the MR linac. Workflows using the internal registration algorithm led to a worse precision (0.2-0.7 mm) compared to workflows where the algorithm was decoupled (0.2 mm). In summary, the spatial deviation between planned and delivered dose of MR-guided ART at the two MR linac systems was well below 1 mm and thus acceptable for clinical use.


Assuntos
Imageamento por Ressonância Magnética , Aceleradores de Partículas , Doses de Radiação , Radioterapia Guiada por Imagem/instrumentação , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Fluxo de Trabalho
5.
Acta Oncol ; 48(2): 267-70, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18756401

RESUMO

INTRODUCTION: Cone beam CT is a powerful tool to ensure an optimum patient positioning in radiotherapy. When cone beam CT scan of a patient is acquired, scan data of the patient are compared and evaluated against a reference image set and patient position offset is calculated. Via the linac control system, the patient is moved to correct for position offset and treatment starts. This procedure requires a reliable system for movement of patient. In this work we present a new method to characterize the reproducibility, linearity and accuracy in table positioning. The method applies to all treatment tables used in radiotherapy. MATERIAL AND METHODS: The table characteristics are investigated on our two recent Elekta Synergy Platforms equipped with Precise Table installed in a shallow pit concrete cavity. Remote positioning of the table uses the auto set-up (ASU) feature in the linac control system software Desktop Pro R6.1. The ASU is used clinically to correct for patient positioning offset calculated via cone beam CT (XVI)-software. High precision steel rulers and a USB-microscope has been used to detect the relative table position in vertical, lateral and longitudinal direction. The effect of patient is simulated by applying external load on the iBEAM table top. For each table position an image is exposed of the ruler and display values of actual table position in the linac control system is read out. The table is moved in full range in lateral direction (50 cm) and longitudinal direction (100 cm) while in vertical direction a limited range is used (40 cm). RESULTS AND DISCUSSION: Our results show a linear relation between linac control system read out and measured position. Effects of imperfect calibration are seen. A reproducibility within a standard deviation of 0.22 mm in lateral and longitudinal directions while within 0.43 mm in vertical direction has been observed. The usage of XVI requires knowledge of the characteristics of remote table positioning. It is our opinion that the method presented meets the requirements in high precision IGRT.


Assuntos
Tomografia Computadorizada de Feixe Cônico/instrumentação , Movimento/fisiologia , Planejamento da Radioterapia Assistida por Computador/instrumentação , Robótica/instrumentação , Decúbito Dorsal/fisiologia , Calibragem , Simulação por Computador , Tomografia Computadorizada de Feixe Cônico/métodos , Humanos , Aceleradores de Partículas/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Robótica/métodos , Rotação , Sensibilidade e Especificidade , Software , Incerteza
6.
Phys Med Biol ; 64(3): 03NT02, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30566917

RESUMO

The potential for delivering high precision radiotherapy using linear accelerators (linacs) has been improved with the development of digital x-ray electronic portal imaging devices (EPID) for acquiring kilovoltage (kV) cone-beam CT and megavoltage (MV) images for patient positioning. EPIDs have also opened the possibilities of developing novel quality assurance and insight into radiotherapy equipment performance. The aim of this work was to measure the offset of the focal spot position (FSP) of a linac under gantry rotation relative to the collimator axis using an EPID. The focal spot was assumed to be a point source of MV x-ray generation. A special phantom was designed for measurement of FSP as a function of gantry angle on clinical linacs. The phantom was designed for attachment to the gantry head and supporting two tungsten-carbide ball-bearings at two different distances from the focal spot. The methodology was demonstrated on a series of images acquired of the phantom on three Elekta linacs in clinical use with 6 MV flattening-filter-free (FFF) beams. The gantry and collimator were rotated 360° in steps of 30°. For each position an image of the phantom was acquired using the EPID. Each series consisted of 169 EPID images. The images were analysed using in-house developed software. Analyses of the EPID images acquired with 6 MV FFF beams showed that the focal spot motion amplitudes relative to the collimator axis during gantry rotation in the longitudinal and lateral directions were less than 0.10 mm and 0.50 mm, respectively, for an optimized 6 MV FFF FSP calibrated linac. In a treatment planning system (TPS) the focal spot is assumed to be located on the rotation axis of the collimator at all gantry angles. This work introduces a method for quantifying the actual variation from this assumption in practice.


Assuntos
Tomografia Computadorizada de Feixe Cônico/instrumentação , Aceleradores de Partículas , Rotação , Calibragem , Humanos , Imagens de Fantasmas , Software
7.
Phys Med ; 63: 41-47, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31221407

RESUMO

The characteristics of the focal spot of the linear accelerator (linac) play a role in determining the resulting dose distribution within the patient, and hence probability of treatment success. A direct measurement of focal spot position is not recommended by AAPM Task Group 142, but factors influenced by focal spot position, such as beam symmetry and isocentre position, are. Traditional methods of measuring focal spot position are time consuming and can only be performed at gantry 0°. The presented method has been proposed using a phantom of novel design to accurately measure the position of the focal spot relative to the collimator's axis of rotation (CAX) at any gantry angle, and to measure the intra-fraction movement of the focal spot relative to the mean position during treatment. The method was reproducible to within 0.012 mm/0.029 mm (mean/max) for the three Varian linacs tested. The focal spot position was shown to deviate from the CAX by up to 0.386 mm during gantry rotation. The focal spot position was more unstable at the start of treatment, with the worst performing linac having an initial displacement of up to 0.15 mm from its mean position before stabilizing to within 0.01 mm after 3 s. The method proposed is a beneficial addition to the quality assurance (QA) schedule of any clinic, allowing quick determination of source position and movement at any gantry angle. Measurement of focal spot allows the possibility of fine-tuning the electron beam steering system to improve the standard of the photon beam and of stereotactic treatments.


Assuntos
Fracionamento da Dose de Radiação , Movimento , Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Incerteza
8.
Phys Med Biol ; 61(11): N249-56, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27183466

RESUMO

Accurate determination of the megavoltage (MV) radiation isocentre of a linear accelerator (linac) is an important task in radiotherapy. The localization of the MV radiation isocentre is crucial for correct calibration of the in-room lasers and the cone-beam CT scanner used for patient positioning prior to treatment. Linac manufacturers offer tools for MV radiation isocentre localization. As a user, there is no access to the documentation for the underlying method and calculation algorithm used in the commercial software. The idea of this work was to evaluate the accuracy of the software tool for MV radiation isocentre calculation as delivered by Elekta using independent software. The image acquisition was based on the scheme designed by the manufacturer. Eight MV images were acquired in each series of a ball-bearing (BB) phantom attached to the treatment couch. The images were recorded at cardinal angles of the gantry using the electronic portal imaging device (EPID). Eight Elekta linacs with three different types of multileaf collimators (MLCs) were included in the test. The influence of MLC orientation, x-ray energy, and phantom modifications were examined. The acquired images were analysed using the Elekta x-ray volume imaging (XVI) software and in-house developed (IHD) MATLAB code. Results from the two different software were compared. A discrepancy in the longitudinal direction of the isocentre localization was found averaging 0.23 mm up to a maximum of 0.75 mm. The MLC orientation or the phantom asymmetry in the longitudinal direction do not appear to cause the discrepancy. The main cause of the differences could not be clearly identified. However, it is our opinion that the commercial software delivered by the linac manufacturer should be improved to reach better stability and precise results in the MV radiation isocentre calculations.


Assuntos
Tomografia Computadorizada de Feixe Cônico/instrumentação , Aceleradores de Partículas , Software , Algoritmos , Calibragem , Humanos , Posicionamento do Paciente , Imagens de Fantasmas
9.
Med Devices (Auckl) ; 8: 457-66, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26604840

RESUMO

BACKGROUND: In radiotherapy treatments, it is crucial to monitor the performance of linac components including gantry, collimation system, and electronic portal imaging device (EPID) during arc deliveries. In this study, a simple EPID-based measurement method is suggested in conjunction with an algorithm to investigate the stability of these systems at various gantry angles with the aim of evaluating machine-related errors in treatments. METHODS: The EPID sag, gantry sag, changes in source-to-detector distance (SDD), EPID and collimator skewness, EPID tilt, and the sag in leaf bank assembly due to linac rotation were separately investigated by acquisition of 37 EPID images of a simple phantom with five ball bearings at various gantry angles. A fast and robust software package was developed for automated analysis of image data. Three Siemens linacs were investigated. RESULTS: The average EPID sag was within 1 mm for all tested linacs. Two machines showed >1 mm gantry sag. Changes in the SDD values were within 7.5 mm. EPID skewness and tilt values were <1° in all machines. The maximum sag in leaf bank assembly was <1 mm. CONCLUSION: The method and software developed in this study provide a simple tool for effective investigation of the behavior of Siemens linac components with gantry rotation. Such a comprehensive study has been performed for the first time on Siemens machines.

10.
Med Phys ; 40(3): 031707, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23464302

RESUMO

PURPOSE: The delivery of high quality stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) treatments to the patient requires knowledge of the position of the isocenter to submillimeter accuracy. To meet the requirements the deviation between the radiation and mechanical isocenters must be less than 1 mm. The use of add-on micromultileaf collimators (µMLCs) in SRS and SRT is an additional challenge to the anticipated high-level geometric and dosimetric accuracy of the treatment. The aim of this work was to quantify the gantry excursions during rotation with and without an add-on µMLC attached to the gantry head. In addition, the shift in the position of the isocenter and its correlation to the kV beam center of the cone-beam CT system was included in the study. METHODS: The quantification of the gantry rotational performance was done using a pointer supported by an in-house made rigid holder attached to the gantry head of the accelerator. The pointer positions were measured using a digital theodolite. To quantify the effect of an µMLC of 50 kg, the measurements were repeated with the µMLC attached to the gantry head. The displacement of the isocenter due to an add-on µMLC of 50 kg was also investigated. In case of the pointer measurement the µMLC was simulated by weights attached to the gantry head. A method of least squares was applied to determine the position and displacement of the mechanical isocenter. Additionally, the displacement of the radiation isocenter was measured using a ball-bearing phantom and the electronic portal image device system. These measurements were based on 8 MV photon beams irradiated onto the ball from the four cardinal angles and two opposed collimator angles. The measurements and analysis of the data were carried out automatically using software delivered by the manufacturer. RESULTS: The displacement of the mechanical isocenter caused by a 50 kg heavy µMLC was found to be (-0.01 ± 0.05, -0.10 ± 0.03, -0.26 ± 0.05) mm in lateral, longitudinal, and vertical direction, respectively. Similarly, the displacement of the radiation isocenter was found to be (0.00 ± 0.03, -0.08 ± 0.06, -0.32 ± 0.02) mm. Good agreement was found between the displacement of the two isocenters. A displacement of the kV cone-beam CT beam center due to the attached weight of 50 kg could not be detected. CONCLUSIONS: General characteristics of the gantry arm excursions and displacements caused by an add-on µMLC have been reported. A 50 kg heavy add-on µMLC results in a isocenter displacement downward of 0.26-0.32 mm. The authors recommend that the beam center of the kV cone-beam CT image system should be matched to the isocenter related to the weight of the µMLC. Consequently, the imperfections in isocenter localizations are transferred to the conventional radiotherapy where the clinical consequences of uncertainties in the submillimeter regime are negligible.


Assuntos
Aceleradores de Partículas , Radioterapia/instrumentação , Tomografia Computadorizada de Feixe Cônico , Equipamentos e Provisões Elétricas , Imagens de Fantasmas , Software
11.
Phys Med Biol ; 55(24): 7597-614, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21098925

RESUMO

The isocentric three-dimensional performance of the Elekta Precise Table was investigated. A pointer was attached to the radiation head of the accelerator and positioned at the geometric rotational axis of the head. A USB-microscope was mounted on the treatment tabletop to measure the table position relative to the pointer tip. The table performance was mapped in terms of USB-microscope images of the pointer tip at different table angles and load configurations. The USB-microscope was used as a detector to measure the pointer tip positions with a resolution down to 0.01 mm. A new elastic model of the treatment table was developed. This model describes the performance of the treatment table quite well except from some deviations due to backlash effects. Geometric and elastic features are described through six parameters. These parameters are calculated using the linear least squares fitting technique. A new method to ensure optimal positioning of the table relative to the accelerator is presented. This method cannot eliminate systematic errors completely. To eliminate systematic errors we suggest that geometric and elastic models of the table and accelerator gantry arm are incorporated in the dose planning system.


Assuntos
Microscopia/métodos , Radioterapia/instrumentação , Rotação , Calibragem , Elasticidade , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA