Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230017, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38583481

RESUMO

Ecosystem response to climate change is complex. In order to forecast ecosystem dynamics, we need high-quality data on changes in past species abundance that can inform process-based models. Sedimentary ancient DNA (sedaDNA) has revolutionised our ability to document past ecosystems' dynamics. It provides time series of increased taxonomic resolution compared to microfossils (pollen, spores), and can often give species-level information, especially for past vascular plant and mammal abundances. Time series are much richer in information than contemporary spatial distribution information, which have been traditionally used to train models for predicting biodiversity and ecosystem responses to climate change. Here, we outline the potential contribution of sedaDNA to forecast ecosystem changes. We showcase how species-level time series may allow quantification of the effect of biotic interactions in ecosystem dynamics, and be used to estimate dispersal rates when a dense network of sites is available. By combining palaeo-time series, process-based models, and inverse modelling, we can recover the biotic and abiotic processes underlying ecosystem dynamics, which are traditionally very challenging to characterise. Dynamic models informed by sedaDNA can further be used to extrapolate beyond current dynamics and provide robust forecasts of ecosystem responses to future climate change. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Assuntos
DNA Antigo , Ecossistema , Animais , Mudança Climática , Biodiversidade , Pólen , Mamíferos
2.
Ecol Evol ; 13(6): e10187, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37342457

RESUMO

Knowledge of trophic interaction is necessary to understand the dynamics of ecosystems and develop ecosystem-based management. The key data to measure these interactions should come from large-scale diet analyses with good taxonomic resolution. To that end, molecular methods that analyze prey DNA from guts and feces provide high-resolution dietary taxonomic data. However, molecular diet analysis may also produce unreliable results if the samples are contaminated by external sources of DNA. Employing the freshwater European whitefish (Coregonus lavaretus) as a tracer for sample contamination, we studied the possible route of whitefish in beaked redfish (Sebastes mentella) guts sampled in the Barents Sea. We used whitefish-specific COI primers for diagnostic analysis, and fish-specific 12S and metazoa-specific COI primers for metabarcoding analyses of intestine and stomach contents of fish samples that were either not cleaned, water cleaned, or bleach cleaned after being in contact with whitefish. Both the diagnostic and COI metabarcoding revealed clear positive effects of cleaning samples as whitefish were detected in significantly higher numbers of uncleaned samples compared to water or bleach-cleaned samples. Stomachs were more susceptible to contamination than intestines and bleach cleaning reduced the frequency of whitefish contamination. Also, the metabarcoding approach detected significantly more reads of whitefish in the stomach than in intestine samples. The diagnostic analysis and COI metabarcoding detected contaminants in a higher and comparable number of gut samples than the 12S-based approach. Our study underlines thus the importance of surface decontamination of aquatic samples to obtain reliable diet information from molecular data.

3.
Sci Adv ; 8(39): eabo7434, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36170372

RESUMO

What drives ecosystem buildup, diversity, and stability? We assess species arrival and ecosystem changes across 16 millennia by combining regional-scale plant sedimentary ancient DNA from Fennoscandia with near-complete DNA and trait databases. We show that postglacial arrival time varies within and between plant growth forms. Further, arrival times were mainly predicted by adaptation to temperature, disturbance, and light. Major break points in ecological trait diversity were seen between 13.9 and 10.8 calibrated thousand years before the present (cal ka BP), as well as break point in functional diversity at 12.0 cal ka BP, shifting from a state of ecosystem buildup to a state where most habitat types and biotic ecosystem components were in place. Trait and functional diversity stabilized around 8 cal ka BP, after which both remained stable, although changes in climate took place and species inflow continued. Our ecosystem reconstruction indicates a millennial-scale time phase of formation to reach stable and resilient levels of diversity and functioning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA