Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biol Chem ; 293(34): 13284-13296, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29980600

RESUMO

Small nucleolar RNAs (snoRNAs) are noncoding RNAs that guide chemical modifications of structural RNAs. Whereas snoRNAs primarily localize in the nucleolus, where their canonical function is to target nascent ribosomal RNAs for 2'-O-methylation, recent studies provide evidence that snoRNAs traffic out of the nucleus. Furthermore, RNA-Seq data indicate that extracellular vesicles released from cells contain snoRNAs. However, it is not known whether snoRNA secretion is regulated or whether secreted snoRNAs are functional. Here, we show that inflammation stimulates secretion of Rpl13a snoRNAs U32a (SNORD32a), U33 (SNORD33), U34 (SNORD34), and U35a (SNORD35a) from cultured macrophages, in mice, and in human subjects. Secreted snoRNAs co-fractionate with extracellular vesicles and are taken up by recipient cells. In a murine parabiosis model, we demonstrate that snoRNAs travel through the circulation to function in distant tissues. These findings support a previously unappreciated link between inflammation and snoRNA secretion in mice and humans and uncover a potential role for secreted snoRNAs in cell-cell communication.


Assuntos
Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/química , RNA Nucleolar Pequeno/metabolismo , Proteínas Ribossômicas/fisiologia , Animais , Transporte Biológico , Nucléolo Celular/genética , Núcleo Celular/genética , Feminino , Humanos , Masculino , Metilação , Camundongos , Camundongos Knockout , RNA Ribossômico/metabolismo , RNA Nucleolar Pequeno/genética
2.
J Mol Cell Cardiol ; 79: 275-83, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25497302

RESUMO

BACKGROUND: Obesity leads to metabolic heart disease (MHD) that is associated with a pathologic increase in myocardial fatty acid (FA) uptake and impairment of mitochondrial function. The mechanism of mitochondrial dysfunction in MHD, which results in oxidant production and decreased energetics, is poorly understood but may be related to excess FAs. Determining the effects of cardiac FA excess on mitochondria can be hindered by the systemic sequelae of obesity. Mice with cardiomyocyte-specific overexpression of the fatty acid transport protein FATP1 have increased cardiomyocyte FA uptake and develop MHD in the absence of systemic lipotoxicity, obesity or diabetes. We utilized this model to assess 1) the effect of cardiomyocyte lipid accumulation on mitochondrial structure and energetic function and 2) the role of lipid-driven transcriptional regulation, signaling, toxic metabolite accumulation, and mitochondrial oxidative stress in lipid-induced MHD. METHODS: Cardiac lipid species, lipid-dependent signaling, and mitochondrial structure/function were examined from FATP1 mice. Cardiac structure and function were assessed in mice overexpressing both FATP1 and mitochondrial-targeted catalase. RESULTS: FATP1 hearts exhibited a net increase (+12%) in diacylglycerol, with increases in several very long-chain diacylglycerol species (+160-212%, p<0.001) and no change in ceramide, sphingomyelin, or acylcarnitine content. This was associated with an increase in phosphorylation of PKCα and PKCδ, and a decrease in phosphorylation of AKT and expression of CREB, PGC1α, PPARα and the mitochondrial fusion genes MFN1, MFN2 and OPA1. FATP1 overexpression also led to marked decreases in mitochondrial size (-49%, p<0.01), complex II-driven respiration (-28.6%, p<0.05), activity of isolated complex II (-62%, p=0.05), and expression of complex II subunit B (SDHB) (-60% and -31%, p<0.01) in the absence of change in ATP synthesis. Hydrogen peroxide production was not increased in FATP1 mitochondria, and cardiac hypertrophy and diastolic dysfunction were not attenuated by overexpression of catalase in mitochondria in FATP1 mice. CONCLUSIONS: Excessive delivery of FAs to the cardiac myocyte in the absence of systemic disorders leads to activation of lipid-driven signaling and remodeling of mitochondrial structure and function.


Assuntos
Lipídeos/efeitos adversos , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Carnitina/análogos & derivados , Carnitina/metabolismo , Catalase/metabolismo , Ceramidas/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Diglicerídeos/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Proteínas de Transporte de Ácido Graxo/metabolismo , Regulação da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Camundongos , Mitocôndrias Cardíacas/ultraestrutura , Modelos Biológicos , Miocárdio/metabolismo , Miocárdio/patologia , Miocárdio/ultraestrutura , Especificidade de Órgãos , Consumo de Oxigênio , PPAR alfa/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosforilação , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esfingomielinas/metabolismo , Fatores de Transcrição/metabolismo
3.
JCI Insight ; 8(8)2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36881475

RESUMO

Necrotizing enterocolitis (NEC) is a deadly gastrointestinal disease of premature infants that is associated with an exaggerated inflammatory response, dysbiosis of the gut microbiome, decreased epithelial cell proliferation, and gut barrier disruption. We describe an in vitro model of the human neonatal small intestinal epithelium (Neonatal-Intestine-on-a-Chip) that mimics key features of intestinal physiology. This model utilizes intestinal enteroids grown from surgically harvested intestinal tissue from premature infants and cocultured with human intestinal microvascular endothelial cells within a microfluidic device. We used our Neonatal-Intestine-on-a-Chip to recapitulate NEC pathophysiology by adding infant-derived microbiota. This model, named NEC-on-a-Chip, simulates the predominant features of NEC, including significant upregulation of proinflammatory cytokines, decreased intestinal epithelial cell markers, reduced epithelial proliferation, and disrupted epithelial barrier integrity. NEC-on-a-Chip provides an improved preclinical model of NEC that facilitates comprehensive analysis of the pathophysiology of NEC using precious clinical samples. This model is an advance toward a personalized medicine approach to test new therapeutics for this devastating disease.


Assuntos
Células Endoteliais , Enterocolite Necrosante , Lactente , Recém-Nascido , Humanos , Recém-Nascido Prematuro , Mucosa Intestinal , Dispositivos Lab-On-A-Chip
4.
Immunohorizons ; 5(4): 193-209, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33906960

RESUMO

Necrotizing enterocolitis (NEC) causes significant morbidity and mortality in premature infants; therefore, the identification of therapeutic and preventative strategies against NEC remains a high priority. The ligand-dependent transcription factor aryl hydrocarbon receptor (AhR) is well known to contribute to the regulation of intestinal microbial communities and amelioration of intestinal inflammation. However, the role of AhR signaling in NEC is unclear. Experimental NEC was induced in 4-d-old wild-type mice or mice lacking AhR expression in the intestinal epithelial cells or AhR expression in CD11c+ cells (AhRΔCD11c) by subjecting animals to twice daily hypoxic stress and gavage feeding with formula supplemented with LPS and enteric bacteria. During NEC, compared with wild-type mice treated with vehicle, littermates treated with an AhR proligand, indole-3-carbinol, had reduced expression of Il1b and Marco, a scavenger receptor that mediates dendritic cell activation and the recognition and clearance of bacterial pathogens by macrophages. Furthermore, indole-3-carbinol treatment led to the downregulation of genes involved in cytokine and chemokine, as revealed by pathway enrichment analysis. AhR expression in the intestinal epithelial cells and their cre-negative mouse littermates were similarly susceptible to experimental NEC, whereas AhRΔCD11c mice with NEC exhibited heightened inflammatory responses compared with their cre-negative mouse littermates. In seeking to determine the mechanisms involved in this increased inflammatory response, we identified the Tim-4- monocyte-dependent subset of macrophages as increased in AhRΔCD11c mice compared with their cre-negative littermates. Taken together, these findings demonstrate the potential for AhR ligands as a novel immunotherapeutic approach to the management of this devastating disease.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Enterocolite Necrosante/tratamento farmacológico , Indóis/farmacologia , Mucosa Intestinal/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Enterocolite Necrosante/metabolismo , Enterocolite Necrosante/microbiologia , Enterocolite Necrosante/patologia , Humanos , Indóis/uso terapêutico , Interleucina-1beta/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos
5.
Cell Rep Med ; 2(6): 100320, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34195684

RESUMO

Necrotizing enterocolitis (NEC) is a deadly intestinal inflammatory disorder that primarily affects premature infants and lacks adequate therapeutics. Interleukin (IL)-22 plays a critical role in gut barrier maintenance, promoting epithelial regeneration, and controlling intestinal inflammation in adult animal models. However, the importance of IL-22 signaling in neonates during NEC remains unknown. We investigated the role of IL-22 in the neonatal intestine under homeostatic and inflammatory conditions by using a mouse model of NEC. Our data reveal that Il22 expression in neonatal murine intestine is negligible until weaning, and both human and murine neonates lack IL-22 production during NEC. Mice deficient in IL-22 or lacking the IL-22 receptor in the intestine display a similar susceptibility to NEC, consistent with the lack of endogenous IL-22 during development. Strikingly, treatment with recombinant IL-22 during NEC substantially reduces inflammation and enhances epithelial regeneration. These findings may provide a new therapeutic strategy to attenuate NEC.


Assuntos
Enterocolite Necrosante/imunologia , Interleucinas/genética , Mucosa Intestinal/imunologia , Proteínas Recombinantes/farmacologia , Regeneração/imunologia , Animais , Animais Recém-Nascidos , Quimiocina CXCL1/genética , Quimiocina CXCL1/imunologia , Quimiocina CXCL2/genética , Quimiocina CXCL2/imunologia , Modelos Animais de Doenças , Enterocolite Necrosante/tratamento farmacológico , Enterocolite Necrosante/microbiologia , Enterocolite Necrosante/patologia , Microbioma Gastrointestinal/imunologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Recém-Nascido , Doenças do Recém-Nascido/imunologia , Doenças do Recém-Nascido/microbiologia , Doenças do Recém-Nascido/patologia , Recém-Nascido Prematuro , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucinas/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Knockout , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Receptores de Interleucina/genética , Receptores de Interleucina/imunologia , Regeneração/genética , Transdução de Sinais , Desmame , Interleucina 22
6.
Nutrients ; 12(10)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036184

RESUMO

Preterm infants are a vulnerable population at risk of intestinal dysbiosis. The newborn microbiome is dominated by Bifidobacterium species, though abnormal microbial colonization can occur by exogenous factors such as mode of delivery, formula feeding, and exposure to antibiotics. Therefore, preterm infants are predisposed to sepsis and necrotizing enterocolitis (NEC), a fatal gastrointestinal disorder, due to an impaired intestinal barrier, immature immunity, and a dysbiotic gut microbiome. Properties of human milk serve as protection in the prevention of NEC. Human milk oligosaccharides (HMOs) and the microbiome of breast milk are immunomodulatory components that provide intestinal homeostasis through regulation of the microbiome and protection of the intestinal barrier. Enteral probiotic supplements have been trialed to evaluate their impact on establishing intestinal homeostasis. Here, we review the protective role of HMOs, probiotics, and synbiotic combinations in protecting a vulnerable population from the pathogenic features associated with necrotizing enterocolitis.


Assuntos
Disbiose/microbiologia , Disbiose/prevenção & controle , Ingestão de Alimentos/fisiologia , Enterocolite Necrosante/etiologia , Enterocolite Necrosante/prevenção & controle , Microbioma Gastrointestinal , Fenômenos Fisiológicos da Nutrição do Lactente/fisiologia , Recém-Nascido Prematuro , Intestinos/microbiologia , Leite Humano , Oligossacarídeos/administração & dosagem , Probióticos/administração & dosagem , Feminino , Homeostase , Humanos , Recém-Nascido , Masculino , Leite Humano/química , Leite Humano/microbiologia , Risco
7.
Clin Epigenetics ; 12(1): 190, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33308304

RESUMO

BACKGROUND: Necrotizing enterocolitis (NEC) remains one of the overall leading causes of death in premature infants, and the pathogenesis is unpredictable and not well characterized. The aim of our study was to determine the molecular phenotype of NEC via transcriptomic and epithelial cell-specific epigenomic analysis, with a specific focus on DNA methylation. METHODS: Using laser capture microdissection, epithelial cell-specific methylation signatures were characterized by whole-genome bisulfite sequencing of ileal and colonic samples at the time of surgery for NEC and after NEC had healed at reanastomosis (n = 40). RNA sequencing was also performed to determine the transcriptomic profile of these samples, and a comparison was made to the methylome data. RESULTS: We found that surgical NEC has a considerable impact on the epigenome by broadly increasing DNA methylation levels, although these effects are less pronounced in genomic regions associated with the regulation of gene expression. Furthermore, NEC-related DNA methylation signatures were influenced by tissue of origin, with significant differences being noted between colon and ileum. We also identified numerous transcriptional changes in NEC and clear associations between gene expression and DNA methylation. CONCLUSIONS: We have defined the intestinal epigenomic and transcriptomic signatures during surgical NEC, which will advance our understanding of disease pathogenesis and may enable the development of novel precision medicine approaches for NEC prediction, diagnosis and phenotyping.


Assuntos
Enterocolite Necrosante/genética , Enterocolite Necrosante/cirurgia , Células Epiteliais/metabolismo , Microdissecção e Captura a Laser/métodos , Animais , Estudos de Casos e Controles , Colo/patologia , Colo/cirurgia , Ilhas de CpG/genética , Metilação de DNA , Enterocolite Necrosante/etiologia , Enterocolite Necrosante/patologia , Epigenômica/métodos , Células Epiteliais/patologia , Estudo de Associação Genômica Ampla/métodos , Humanos , Íleo/patologia , Íleo/cirurgia , Recém-Nascido , Intestinos/patologia , Microdissecção e Captura a Laser/efeitos adversos , Modelos Animais , Análise de Sequência de RNA/métodos , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA