Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
FASEB J ; 38(1): e23326, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019196

RESUMO

The identification and recombinant production of functional antigens and/or epitopes of pathogens represent a crucial step for the development of an effective protein-based vaccine. Many vaccine targets are outer membrane proteins anchored into the lipidic bilayer through an extended hydrophobic portion making their recombinant production challenging. Moreover, only the extracellular loops, and not the hydrophobic regions, are naturally exposed to the immune system. In this work, the Domain 3 (D3) from Group B Streptococcus (GBS) pilus 2a backbone protein has been identified and engineered to be used as a scaffold for the display of extracellular loops of two Neisseria gonorrhoeae membrane proteins (PorB.1b and OpaB). A computational structure-based approach has been applied to the design of both the scaffold and the model antigens. Once identified the best D3 engineerable site, several different chimeric D3 displaying PorB.1b and OpaB extracellular loops were produced as soluble proteins. Each molecule has been characterized in terms of solubility, stability, and ability to correctly display the foreign epitope. This antigen dissection strategy allowed the identification of most immunogenic extracellular loops of both PorB.1b and OpaB gonococcal antigens. The crystal structure of chimeric D3 displaying PorB.1b immunodominant loop has been obtained confirming that the engineerization did not alter the predicted native structure of this epitope. Taken together, the reported data suggest that D3 is a novel protein scaffold for epitope insertion and display, and a valid alternative to the production of whole membrane protein antigens. Finally, this work describes a generalized computational structure-based approach for the identification, design, and dissection of epitopes in target antigens through chimeric proteins.


Assuntos
Proteínas de Membrana , Vacinas , Epitopos/genética , Antígenos de Bactérias/genética , Bicamadas Lipídicas
2.
Infection ; 51(4): 981-991, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36547864

RESUMO

PURPOSE: Group B streptococcus (GBS) remains a leading cause of invasive disease, mainly sepsis and meningitis, in infants < 3 months of age and of mortality among neonates. This study, a major component of the European DEVANI project (Design of a Vaccine Against Neonatal Infections) describes clinical and important microbiological characteristics of neonatal GBS diseases. It quantifies the rate of antenatal screening and intrapartum antibiotic prophylaxis among cases and identifies risk factors associated with an adverse outcome. METHODS: Clinical and microbiological data from 153 invasive neonatal cases (82 early-onset [EOD], 71 late-onset disease [LOD] cases) were collected in eight European countries from mid-2008 to end-2010. RESULTS: Respiratory distress was the most frequent clinical sign at onset of EOD, while meningitis is found in > 30% of LOD. The study revealed that 59% of mothers of EOD cases had not received antenatal screening, whilst GBS was detected in 48.5% of screened cases. Meningitis was associated with an adverse outcome in LOD cases, while prematurity and the presence of cardiocirculatory symptoms were associated with an adverse outcome in EOD cases. Capsular-polysaccharide type III was the most frequent in both EOD and LOD cases with regional differences in the clonal complex distribution. CONCLUSIONS: Standardizing recommendations related to neonatal GBS disease and increasing compliance might improve clinical care and the prevention of GBS EOD. But even full adherence to antenatal screening would miss a relevant number of EOD cases, thus, the most promising prophylactic approach against GBS EOD and LOD would be a vaccine for maternal immunization.


Assuntos
Complicações Infecciosas na Gravidez , Infecções Estreptocócicas , Recém-Nascido , Lactente , Humanos , Feminino , Gravidez , Streptococcus agalactiae , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/prevenção & controle , Antibioticoprofilaxia/efeitos adversos , Complicações Infecciosas na Gravidez/diagnóstico , Complicações Infecciosas na Gravidez/epidemiologia , Europa (Continente)/epidemiologia
3.
PLoS One ; 10(5): e0125985, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25946017

RESUMO

The human and bovine bacterial pathogen Streptococcus agalactiae (Group B Streptococcus, GBS) expresses a thick polysaccharide capsule that constitutes a major virulence factor and vaccine target. GBS can be classified into ten distinct serotypes differing in the chemical composition of their capsular polysaccharide. However, non-typeable strains that do not react with anti-capsular sera are frequently isolated from colonized and infected humans and cattle. To gain a comprehensive insight into the molecular basis for the loss of capsule expression in GBS, a collection of well-characterized non-typeable strains was investigated by genome sequencing. Genome based phylogenetic analysis extended to a wide population of sequenced strains confirmed the recently observed high clonality among GBS lineages mainly containing human strains, and revealed a much higher degree of diversity in the bovine population. Remarkably, non-typeable strains were equally distributed in all lineages. A number of distinct mutations in the cps operon were identified that were apparently responsible for inactivation of capsule synthesis. The most frequent genetic alterations were point mutations leading to stop codons in the cps genes, and the main target was found to be cpsE encoding the portal glycosyl transferase of capsule biosynthesis. Complementation of strains carrying missense mutations in cpsE with a wild-type gene restored capsule expression allowing the identification of amino acid residues essential for enzyme activity.


Assuntos
Cápsulas Bacterianas/genética , Proteínas de Bactérias/genética , Streptococcus agalactiae/genética , Animais , Sequência de Bases , Bovinos , DNA Bacteriano/genética , Feminino , Humanos , Mastite Bovina/microbiologia , Tipagem de Sequências Multilocus , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência , Análise de Sequência de DNA , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae/isolamento & purificação , Streptococcus agalactiae/patogenicidade
4.
Hum Gene Ther ; 13(3): 355-65, 2002 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-11860703

RESUMO

Electrogene transfer (EGT) of plasmid DNA into skeletal muscle is a promising strategy for the treatment of muscle disorders and for the systemic secretion of therapeutic proteins. We report here that preinjecting hyaluronidase (HYAse) significantly increases the gene transfer efficiency of muscle EGT. Three constructs encoding mouse erythropoietin (pCMV/mEPO), secreted alkaline phosphatase (pCMV/SeAP), and luciferase (pGGluc) were electroinjected intramuscularly in BALB/c mice and rabbits with and without HYAse pretreatment. Preinjection 1 or 4 hr before EGT increased EPO gene expression by about 5-fold in mice and maintained higher gene expression than plasmid EGT alone. A similar increment in gene expression was observed on pretreatment with HYAse and electroinjection of pCMV/mEPO into rabbit tibialis muscle. The increment of gene expression in rabbits reached 17-fold on injection of plasmid pCMV/SeAP and 24-fold with plasmid pGGluc. Injection of a plasmid encoding beta-galactosidase (pCMV/beta gal/NLS) and subsequent staining with 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside indicated that HYAse increased the tissue area involved in gene expression. No irreversible tissue damage was observed on histological analysis of treated muscles. HYAse is used in a variety of clinical applications, and thus the combination of HYAse pretreatment and muscle EGT may constitute an efficient gene transfer method to achieve therapeutic levels of gene expression.


Assuntos
Eletroporação , Técnicas de Transferência de Genes , Hialuronoglucosaminidase/fisiologia , Músculo Esquelético/fisiologia , Animais , DNA/administração & dosagem , Feminino , Expressão Gênica , Hialuronoglucosaminidase/administração & dosagem , Hialuronoglucosaminidase/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Plasmídeos , Coelhos
5.
J Infect Dis ; 198(6): 890-8, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18694342

RESUMO

We have recently shown that group B Streptococcus (GBS) crosses the epithelial barrier by a paracellular route. Here, we show that, although deletion of the pilus backbone protein did not affect GBS adhesiveness, it reduced the pathogen's capacity to transcytose through differentiated human epithelial cells. In addition, contrary to our expectation, a strain with a mutant pilus ancillary protein and reduced adhesiveness translocated through the epithelial monolayer in a fashion identical to that of the isogenic wild-type strain. To monitor the localization of pili during GBS paracytosis, we performed 3-dimensional confocal experiments. By this approach, we observed that pili located in the intercellular space ahead of translocating bacteria. These results were also confirmed by a novel in vitro model of GBS infection in which bacteria bind to epithelial surfaces against the action of gravitation. These findings suggest a dual role for pilus components during the critical steps leading to GBS dissemination in the host.


Assuntos
Translocação Bacteriana/fisiologia , Células Epiteliais/microbiologia , Fímbrias Bacterianas/fisiologia , Streptococcus agalactiae/fisiologia , Células CACO-2 , Colo do Útero/microbiologia , Neoplasias do Colo , Feminino , Citometria de Fluxo , Humanos , Mucosa Intestinal/microbiologia , Neoplasias Pulmonares , Microscopia Confocal
6.
Proc Natl Acad Sci U S A ; 99(19): 12391-6, 2002 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-12200547

RESUMO

The 2,160,267 bp genome sequence of Streptococcus agalactiae, the leading cause of bacterial sepsis, pneumonia, and meningitis in neonates in the U.S. and Europe, is predicted to encode 2,175 genes. Genome comparisons among S. agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes, and the other completely sequenced genomes identified genes specific to the streptococci and to S. agalactiae. These in silico analyses, combined with comparative genome hybridization experiments between the sequenced serotype V strain 2603 V/R and 19 S. agalactiae strains from several serotypes using whole-genome microarrays, revealed the genetic heterogeneity among S. agalactiae strains, even of the same serotype, and provided insights into the evolution of virulence mechanisms.


Assuntos
Genoma Bacteriano , Streptococcus agalactiae/genética , Streptococcus agalactiae/patogenicidade , Sequência de Aminoácidos , Evolução Biológica , Humanos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Sorotipagem , Especificidade da Espécie , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/classificação , Streptococcus pneumoniae/genética , Streptococcus pyogenes/genética , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA