Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Dairy Sci ; 107(6): 3688-3699, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38135042

RESUMO

The objective of the study was to quantify the association between the birth weight of a calf and the subsequent performance of its dairy dam in the absence of any recorded calving assistance. A total of 11,592 lactation records from 4,549 spring-calving dairy cows were used. The association between a series of quantitative cow performance metrics (dependent variable) and calf birth weight (independent variable) was determined using linear mixed models; logistic regression was used where the dependent variable was binary. Nuisance factors in the models were calf sex, heterosis coefficient of both the cow and calf, dry period length immediately before the birth of the calf, cow age at calving relative to the median cow age per parity, breed proportion of the cow, cow live weight between 100 and 200 d of lactation relative to the mean cow weight per parity, and contemporary group. Calf birth weight was included in the model as either a continuous or a categorical variable. Primiparous and multiparous cows were analyzed separately. Mean (SD) calf birth weight was 36.2 (6.8) kg. In primiparous cows, calf birth weight was associated with milk yield in the first 60 d of lactation, calving to first service interval, calving body weight (BW), and both nadir BW and body condition score (BCS). In multiparous cows, calf birth weight was associated with total milk, fat, and protein yield in the first 60 and 305 d of lactation, peak milk yield, total milk solids, both calving and nadir BW, and BCS loss from calving to nadir. Relative to primiparous cows that gave birth to calves weighing 34 to 37 kg (i.e., population mean), their contemporaries who gave birth to calves that weighed 15 to 29 kg produced 9.82 kg more milk in the first 60 d of lactation, had a 2-d shorter interval to first service, and were 8.08 kg and 5.51 kg lighter at calving and nadir BW, respectively; the former was also 0.05 units lower in BCS (5-point scale, 1 = emaciated and 5 = obese) at nadir. Relative to multiparous cows that gave birth to calves that were 34 to 37 kg birth weight, multiparous cows that gave birth to calves that were 15 to 29 kg yielded 59.63 kg, 2.44 kg, and 1.76 kg less milk, fat, and protein, respectively, in the first 60 d of lactation; produced 17.69 kg less milk solids throughout the 305-d lactation; and were also 10.49 kg lighter at nadir and lost 0.01 units more BCS to nadir. In a separate series of analyses, sire breed was added to the model as a fixed effect with and without calf birth weight. When calf birth weight was not adjusted for, 60-d milk yield for multiparous cows who gave birth to calves sired by a traditional beef breed (i.e., Angus, Hereford) produced 59.63 kg more milk than multiparous cows who gave birth to calves sired by a Holstein-Friesian. Hence, calf birth weight is associated with some subsequent dam performance measures; however, where associations do exist, the effect is biologically small.


Assuntos
Peso ao Nascer , Distocia , Lactação , Leite , Animais , Bovinos , Feminino , Leite/metabolismo , Distocia/veterinária , Gravidez , Paridade , Indústria de Laticínios
2.
J Dairy Sci ; 105(2): 1346-1356, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34955265

RESUMO

Measuring dry matter intake (DMI) in grazing dairy cows using currently available techniques is invasive, time consuming, and expensive. An alternative to directly measuring DMI for use in genetic evaluations is to identify a set of readily available animal features that can be used in a multitrait genetic evaluation for DMI. The objectives of the present study were thus to estimate the genetic correlations between readily available body-related linear type traits and DMI in grazing lactating Holstein-Friesian cows, but importantly also estimate the partial genetic correlations between these linear traits and DMI, after adjusting for differences in genetic merit for body weight. Also of interest was whether the predictive ability derived from the estimated genetic correlations materialized upon validation. After edits, a total of 8,055 test-day records of DMI, body weight, and milk yield from 1,331 Holstein-Friesian cows were available, as were chest width, body depth, and stature from 47,141 first lactation Holstein-Friesian cows. In addition to considering the routinely recorded linear type traits individually, novel composite traits were defined as the product of the linear type traits as an approximation of rumen volume. All linear type traits were moderately heritable, with heritability estimates ranging from 0.27 (standard error = 0.14) to 0.49 (standard error = 0.15); furthermore, all linear type traits were genetically correlated (0.29 to 0.63, standard error 0.14 to 0.12) with DMI. The genetic correlations between the individual linear type traits and DMI, when adjusted for genetic differences in body weight, varied from -0.51 (stature) to 0.48 (chest width). These genetic correlations between DMI and linear type traits suggest linear type traits may be useful predictors of DMI, even when body weight information is available. Nonetheless, estimated genetic merit of DMI derived from a multitrait genetic evaluation of linear type traits did not correlate strongly with actual DMI in a set of validation animals; the benefit was even less if body weight data were also available.


Assuntos
Lactação , Leite , Ração Animal/análise , Animais , Peso Corporal/genética , Bovinos/genética , Ingestão de Alimentos , Feminino , Lactação/genética , Fenótipo
3.
J Dairy Sci ; 104(7): 8076-8093, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33896640

RESUMO

Various studies have validated that genetic divergence in dairy cattle translates to phenotypic differences; nonetheless, many studies that consider the breeding goal, or associated traits, have generally been small scale, often undertaken in controlled environments, and they lack consideration for the entire suite of traits included in the breeding goal. Therefore, the objective of the present study was to fill this void, and in doing so, provide producers with confidence that the estimated breeding values (EBV) included in the breeding goal do (or otherwise) translate to desired changes in performance among commercial cattle; an additional outcome of such an approach is the identification of potential areas for improvements. Performance data on 536,923 Irish dairy cows (and their progeny) from 13,399 commercial spring-calving herds were used. Association analyses between the cow's EBV of each trait included in the Irish total merit index for dairy cows (which was derived before her own performance data accumulated) and her subsequent performance were undertaken using linear mixed models; milk production, fertility, calving, maintenance (i.e., liveweight), beef, health, and management traits were all considered in the analyses. Results confirm that excelling in EBV for individual traits, as well as on the total merit index, generally delivers superior phenotypic performance; examples of the improved performance for genetically elite animals include a greater yield and concentration of both milk fat and milk protein, despite a lower milk volume, superior reproductive performance, better survival, improved udder and hoof health, lighter cows, and fewer calving complications; all these gains were achieved with minimal to no effect on the beef merit of the dairy cow's progeny. The associated phenotypic change in each performance trait per unit change in its respective EBV was largely in line with the direction and magnitude of expectation, the exception being for calving interval. Per unit change in calving interval EBV, the direction of phenotypic response was as anticipated but the magnitude of the response was only half of what was expected. Despite the deviation from expectation between the calving interval EBV and its associated phenotype, a superior total merit index or a superior fertility EBV was indeed associated with an improvement in all detailed fertility performance phenotypes investigated. Results substantiate that breeding is a sustainable strategy of improving phenotypic performance in commercial dairy cattle and, by extension, profit.


Assuntos
Fertilidade , Leite , Animais , Bovinos/genética , Estudos Transversais , Feminino , Lactação , Fenótipo , Reprodução
4.
J Dairy Sci ; 104(1): 561-574, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33189261

RESUMO

Lactation yield estimates standardized to common lactation lengths of 270-d or 305-d equivalents are commonly used in management decision support tools and dairy cow genetic evaluations. The use of such measurements to quantify the (genetic) merit of individual cows fails to penalize cows that do not reach the standardized lactation length, or indeed reward cows that lactate for more than the standardized lactation length. The objective of the present study was to quantify the genetic and nongenetic factors associated with lactation length in seasonal-calving, pasture-based dairy cows. A total of 616,350 lactation length records from 285,598 Irish cows were used. Linear mixed models were used to quantify the associations between lactation length and calving month, parity, age at calving, previous dry period length, calving difficulty score, heterosis, recombination loss, breed, and herd size, as well as to estimate the genetic and residual variance components of lactation length. The median lactation length in the edited data set was 288 d, with 27% of cows achieving lactations of at least 305 d. Relative to cows calving in January, the lactations of cow calving in February, March, or April was, on average, 4.2, 12.7, and 21.9 d shorter, respectively. The lactation length of a first parity cow was, on average, 7.8, 8.6, and 8.4 d shorter than that of second, third, and fourth parity cows, respectively. Norwegian Red and Montbéliarde cows had, on average, a 4.7- and 1.6-d shorter lactation than Holstein-Friesian cows, respectively. The heritability estimate, coefficient of genetic variation, and repeatability estimate of lactation length were 0.02, 1.2%, and 0.04, respectively. Based on the genetic standard deviation for lactation length estimated in the present study (3.3 d), cows ranked in the top 20% for genetic merit for lactation length would be expected to have lactations 9.2 d longer than cows in the bottom 20%, demonstrating exploitable genetic variability. Given the vast array of genetic and nongenetic factors associated with lactation length, an approach which combines improved management practices and selective breeding may be an efficient and effective strategy to lengthen lactations.


Assuntos
Bovinos/genética , Lactação/genética , Animais , Feminino , Herbivoria , Leite , Paridade , Gravidez , Estações do Ano , Tempo
5.
J Dairy Sci ; 103(9): 8343-8349, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32684461

RESUMO

When serving a female, the producer must decide whether to mate her to a dairy or beef bull. Tools assisting in this decision could be a useful component of the decision process. A database of 2,283,100 artificial inseminations from 806,725 dairy females was used to investigate what factors were associated with servicing a given female to a beef bull. The probability of being inseminated with a beef bull increased with each service and as the breeding season progressed. An older cow had greater odds of being served with a beef bull, as did cows that calved later in the year, had recently experienced dystocia, were a longer time calved, or were of a poor overall genetic merit compared with herdmates. Cows with low somatic cell count in the previous lactation compared with herdmates were less likely to be mated to a beef bull, as were cows that yielded relatively higher milk solids in the previous lactation. Relative to a first-parity cow, the odds of a fifth-parity cow being mated to a beef bull were 1.35, whereas those of a tenth-parity cow were 2.11. The odds of a female in the worst 10% for total genetic merit being mated to a beef bull were 2.90 times those of a female in the top 10%. Although dystocia was associated with the likelihood of being mated to a beef bull, the actual likelihood did not vary much by level of dystocia experienced. Relative to the first service, the odds of the third and fifth services being to a beef bull were 2.23 and 3.71, respectively. These probability estimates can form the back-end system supporting decisions on mating type for a female within a sire mating advice system but also in risk analysis of farm management.


Assuntos
Bovinos/fisiologia , Preferência de Acasalamento Animal , Animais , Cruzamento , Bovinos/genética , Contagem de Células/veterinária , Feminino , Inseminação Artificial/veterinária , Lactação , Masculino , Leite/química , Leite/citologia , Paridade , Gravidez
6.
J Dairy Sci ; 103(9): 8241-8250, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32684474

RESUMO

Much of the research to date on dairy × beef matings has focused only on the greater revenue attainable from these beef-cross calves. The objective of the present study was to quantify the mean effect on cow performance following the birth of calves differing in beef merit; all calves were born without calving assistance. Beef merit in the present study was based on the breed of the sire but also its genetic merit for carcass weight and conformation. The cross-sectional study used up to 346,765 calving events from 230,255 Holstein-Friesian cows in 3,604 herds. Performance traits of interest were those associated with milk production, including somatic cell count, as well as female reproductive performance. Sire breed was associated with all yield traits, somatic cell count, and both pregnancy rate and the interval from calving to first service; no association existed with either submission rate or number of services. Relative to a Holstein-Friesian sire, the mean 305-d milk yield (in kg) was 45.22 (standard error, SE = 4.0), 62.0 (SE = 36.8), 65.4 (SE = 9.6), 101.1 (SE = 31.6), 36.7 (SE = 4.9), 51.5 (SE = 10.7), 53.3 (SE = 31.5), and 43.3 (SE = 23.4) less for cows that gave birth to Angus-, Aubrac-, Beligan Blue-, Charolais-, Hereford-, Limousin-, Saler-, or Simmental-sired calves, respectively. Service sire accounted for only 1% of the phenotypic variation in all 3 milk production traits when fitted as a random effect in the model. The regression coefficients of phenotypic milk, fat, and protein yields on sire (of calf) predicted transmitting ability for carcass weight were -1.84 (SE = 0.17), -0.10 (SE = 0.01), and -0.08 kg (SE = 0.01), respectively. The respective regression coefficients on sire (of calf) predicted transmitting ability for carcass conformation (scale of 1 to 15; 1 = poor and 15 = excellent) were -23.46 (SE = 1.81), -1.20 (SE = 0.08), and -1.05 units (SE = 0.06). The biological significance of the sire breed effects or the measure of sire genetic merit on the reproductive traits was either not different from zero or biologically small. Although statistically significant associations existed between sire beef merit and both milk and reproductive performance of the mate, the actual size of the associations was biologically small.


Assuntos
Bovinos/fisiologia , Contagem de Células/veterinária , Carne/análise , Leite/metabolismo , Reprodução , Animais , Estudos Transversais , Feminino , Masculino
7.
J Dairy Sci ; 103(3): 2523-2533, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31928752

RESUMO

While several studies in cattle have confirmed the improved performance achievable from selection on total merit indexes, these studies have solely been confined to specific-purpose beef or dairy total merit indexes. Validation studies of total merit indexes used to select beef sires for use on dairy females are lacking. The objective here was to fill this void by quantifying the performance of beef × dairy progeny where the sire excels in either a total merit index encompassing calving performance and beef performance traits (dairy-beef index; DBI) or excels in a subindex based solely on calving performance (CLV); for comparative purposes, these beef × dairy progeny were also compared with dairy × dairy progeny. A total of 123,785 calving records from 101,773 dairy cows calving in 3,065 dairy herds were used; of these, 48,875 progeny also had carcass information. The beef sires were stratified into 5 equally sized groups based separately on their DBI or CLV. Linear and threshold mixed models were used to compare calving and carcass performance of all 3 sire genotypes. Of the 415 sires that ranked in the highest of the 5 strata on the CLV subindex, only 52% of them ranked in the highest stratum for the DBI. The percentage of primiparae requiring any assistance at calving was 2 to 3 percentage units greater for the higher DBI sires relative to both the higher CLV beef sires and the dairy sires (not ranked on anything); no difference existed in multiparae. The extent of calving difficulty in primiparae was, however, less in higher DBI beef sires relative to both the higher CLV beef sires and the dairy sires, although the differences were biologically small. Perinatal mortality was greatest in the beef sires relative to the dairy sires, but no difference existed between the high CLV or high DBI beef sires. No difference in progeny gestation length was evident between the high DBI or high CLV beef sires, although both were >2 d longer than progeny from dairy sires. The higher DBI sires produced progeny with heavier, more conformed carcasses relative to the progeny from both high CLV beef sires and dairy sires. No differences existed between the progeny of the beef sires ranked highly on the CLV versus those ranked highly on the DBI for the probability of achieving the specification for carcass weight (between 270 and 380 kg) or fat score; the higher DBI animals, however, had a 4 to 10% greater probability of achieving the minimum carcass conformation required. In all instances, the beef sires had a greater probability of achieving all specifications relative to the progeny from the dairy sires with the difference for conformation being particularly large. Results indicate that more balanced progeny can be generated using a DBI, helping meet the requirements of both dairy and beef producers. Ignoring market failure across sectors, using higher DBI sires could increase dairy herd profit by 3 to 5% over and above the status quo approach to selection in dairy (i.e., CLV subindex).


Assuntos
Bovinos/fisiologia , Indústria de Laticínios , Seleção Artificial , Animais , Bovinos/genética , Feminino , Masculino , Paridade , Fenótipo , Gravidez , Reprodução
8.
J Dairy Sci ; 103(2): 1701-1710, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31785871

RESUMO

Understanding the preferences of dairy cattle producers when selecting beef bulls for mating can help inform beef breeding programs as well as provide default parameters in mating advice systems. The objective of the present study was to characterize the genetic merit of beef artificial insemination (AI) bulls used in dairy herds, with particular reference to traits associated with both calving performance and carcass merit. The characteristics of the beef AI bulls used were compared with those of the dairy AI bulls used on the same farms. A total of 2,733,524 AI records from 928,437 females in 5,967 Irish dairy herds were used. Sire predicted transmitting ability (PTA) values and associated reliability values for calving performance and carcass traits based on national genetic evaluations from prior to the insemination were used. Fixed effects models were used to relate both genetic merit and the associated reliability of the dairy and beef bulls used on the farm with herd size, the extent of Holstein-Friesian × Jersey crossbreeding adopted by the herd, whether the herd used a technician insemination service or do-it-yourself, and the parity of the female mated. The mean direct calving difficulty PTA of the beef bulls used was 1.85 units higher than that of the dairy bulls but with over 3 times greater variability in the beef bulls. This 1.85 units equates biologically to an expectation of 1.85 more dystocia events per 100 dairy cows mated in the beef × dairy matings. The mean calving difficulty PTA of the dairy AI bulls used reduced with increasing herd size, whereas the mean calving difficulty PTA of the beef AI bulls used increased as herd size increased from 75 cows or fewer to 155 cows; the largest herds (>155 cows) used notably easier-calving beef bulls, albeit the calving difficulty PTA of the beef bulls was 3.33 units versus 1.67 units for the dairy bulls used in these herds. Although we found a general tendency for larger herds to use dairy AI bulls with lower reliability, this trend was not obvious in the beef AI bulls used. Irrespective of whether dairy or beef AI bulls were considered, herds that operated more extensive Holstein-Friesian × Jersey crossbreeding (i.e., more than 50% crossbred cows) used, on average, easier calving, shorter gestation-length bulls with lighter expected progeny carcasses of poorer conformation. Mean calving difficulty PTA of dairy bulls used increased from 1.39 in heifers to 1.79 in first-parity cows and to 1.82 in second-parity cows, remaining relatively constant thereafter. In contrast, the mean calving difficulty PTA of the beef bulls used increased consistently with cow parity. Results from the present study demonstrate a clear difference in the mean acceptable genetic merit of beef AI bulls relative to dairy AI bulls but also indicates that these acceptable limits vary by herd characteristics.


Assuntos
Cruzamento , Bovinos , Inseminação Artificial/veterinária , Animais , Feminino , Masculino , Paridade , Fenótipo , Gravidez , Reprodutibilidade dos Testes , Reprodução
9.
J Dairy Sci ; 102(5): 4249-4263, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30852025

RESUMO

Infection of cattle with bovine paratuberculosis (i.e., Johne's disease) is caused by Mycobacterium avium ssp. paratuberculosis (MAP) and results in a chronic incurable gastroenteritis. This disease, which has economic ramifications for the cattle industry, is increasing in detected prevalence globally; subclinically infected animals can silently shed the bacterium into the environment for years, exposing contemporaries and hampering disease-control programs. The objective of the present study was to first quantify the genetic parameters for humoral response to MAP in dairy cattle. This was followed by a genome-based association analysis and subsequent downstream bioinformatic analyses from imputed whole genome sequence SNP data. After edits, ELISA test records were available on 136,767 cows; analyses were also undertaken on a subset of 33,818 of these animals from herds with at least 5 MAP ELISA-positive cows, with at least 1 of those positive cows being homebred. Variance components were estimated using univariate animal and sire linear mixed models. The heritability calculated from the animal model for humoral response to MAP using alternative phenotype definitions varied from 0.02 (standard error = 0.003) to 0.05 (standard error = 0.008). The genome-based associations were undertaken within a mixed model framework using weighted deregressed estimated breeding values as a dependent variable on 1,883 phenotyped animals that were ≥87.5% Holstein-Friesian. Putative susceptibility quantitative trait loci (QTL) were identified on Bos taurus autosome 1, 3, 5, 6, 8, 9, 10, 11, 13, 14, 18, 21, 23, 25, 26, 27, and 29; mapping the most significant SNP to genes within and overlapping these QTL revealed that the most significant associations were with the 10 functional candidate genes KALRN, ZBTB20, LPP, SLA2, FI3A1, LRCH3, DNAJC6, ZDHHC14, SNX1, and HAS2. Pathway analysis failed to reveal significantly enriched biological pathways, when both bovine-specific pathway data and human ortholog data were taken into account. The existence of genetic variation for MAP susceptibility in a large data set of dairy cows signifies the potential of breeding programs for reducing MAP susceptibility. Furthermore, the identification of susceptible QTL facilitates greater biological understanding of bovine paratuberculosis and potential therapeutic targets for future investigation. The novel molecular similarities identified between bovine paratuberculosis and human inflammatory bowel disease suggest potential for human therapeutic interventions to be translated to veterinary medicine and vice versa.


Assuntos
Doenças dos Bovinos/imunologia , Gastroenteropatias/imunologia , Imunidade Humoral/genética , Mycobacterium avium subsp. paratuberculosis/imunologia , Paratuberculose/imunologia , Animais , Cruzamento , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/genética , Suscetibilidade a Doenças , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Gastroenteropatias/genética , Estudo de Associação Genômica Ampla , Humanos , Modelos Lineares , Masculino , Paratuberculose/genética , Paratuberculose/microbiologia , Fenótipo , Locos de Características Quantitativas
10.
J Dairy Sci ; 101(11): 10034-10047, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30219421

RESUMO

Cattle breeding programs that strive to reduce the animal-level incidence of lameness are often hindered by the availability of informative phenotypes. As a result, indicator traits of lameness (i.e., hoof health and morphological conformation scores) can be used to improve the accuracy of selection and subsequent genetic gain. Therefore, the objectives of the present study were to estimate the variance components for hoof health traits using various phenotypes collected from a representative sample of Irish dairy cows. Also of interest to the present study was the genetic relationship between both hoof health traits and conformation traits with producer-scored lameness. Producer-recorded lameness events and linear conformation scores from 307,657 and 117,859 Irish dairy cows, respectively, were used. Data on hoof health (i.e., overgrown sole, white line disease, and sole hemorrhage), mobility scores, and body condition scores were also available from a research study on up to 11,282 Irish commercial dairy cows. Linear mixed models were used to quantify variance components for each trait and to estimate genetic correlations among traits. The estimated genetic parameters for hoof health traits in the present study were greater (i.e., heritability range: 0.005 to 0.27) than previously reported in dairy cows. With the exception of analyses that considered hoof health traits in repeatability models, little difference in estimated variance components existed among the various hoof-health phenotypes. Results also suggest that producer-recorded lameness is correlated with both hoof health (i.e., genetic correlation up to 0.48) and cow mobility (i.e., genetic correlation = 0.64). Moreover, cows that genetically tend to have rear feet that appear more parallel when viewed from the rear are also genetically more predisposed to lameness (genetic correlation = 0.39); genetic correlations between lameness and other feet and leg type traits, as well as between lameness and frame type traits, were not different from zero. Results suggest that if the population breeding goal was to reduce lameness incidence, improve hoof health, or improve cow mobility, genetic selection for either of these traits should indirectly benefit the other traits. Results were used to quantify the genetic gains achievable for lameness when alternative phenotypes are available.


Assuntos
Doenças dos Bovinos/prevenção & controle , Bovinos/genética , Casco e Garras , Coxeadura Animal/genética , Coxeadura Animal/prevenção & controle , Seleção Genética , Animais , Cruzamento/métodos , Doenças dos Bovinos/genética , Feminino , Marcha , Fenótipo
11.
J Dairy Sci ; 101(7): 6190-6204, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29705421

RESUMO

Bovine herpesvirus-1 (BoHV-1) is a viral pathogen of global significance that is known to instigate several diseases in cattle, the most notable of which include infectious bovine rhinotracheitis and bovine respiratory disease. The genetic variability in the humoral immune response to BoHV-1 has, to our knowledge, not ever been quantified. Therefore, the objectives of the present study were to estimate the genetic parameters for the humoral immune response to BoHV-1 in Irish female dairy cattle, as well as to investigate the genetic relationship between the humoral immune response to BoHV-1 with milk production performance, fertility performance, and animal mortality. Information on antibody response to BoHV-1 was available to the present study from 2 BoHV-1 sero-prevalence research studies conducted between the years 2010 to 2015, inclusive; after edits, BoHV-1 antibody test results were available on a total of 7,501 female cattle from 58 dairy herds. National records of milk production (i.e., 305-d milk yield, fat yield, protein yield, and somatic cell score; n = 1,211,905 milk-recorded cows), fertility performance (i.e., calving performance, pregnancy diagnosis, and insemination data; n = 2,365,657 cows) together with animal mortality data (i.e., birth, farm movement, death, slaughter, and export events; n = 12,853,257 animals) were also available. Animal linear mixed models were used to quantify variance components for BoHV-1 as well as to estimate genetic correlations among traits. The estimated genetic parameters for the humoral immune response to BoHV-1 in the present study (i.e., heritability range: 0.09 to 0.16) were similar to estimates previously reported for clinical signs of bovine respiratory disease in dairy and beef cattle (i.e., heritability range: 0.05 to 0.11). Results from the present study suggest that breeding for resistance to BoHV-1 infection could reduce the incidence of respiratory disease in cattle while having little or no effect on genetic selection for milk yield or milk constituents (i.e., genetic correlations ranged from -0.13 to 0.17). Moreover, even though standard errors were large, results also suggest that breeding for resistance to BoHV-1 infection may indirectly improve fertility performance while also reducing the incidence of mortality in older animals (i.e., animals >182 d of age). Results can be used to inform breeding programs of potential genetic gains achievable for resistance to BoHV-1 infection in cattle.


Assuntos
Bovinos , Variação Genética , Herpesvirus Bovino 1/imunologia , Imunidade Humoral/genética , Rinotraqueíte Infecciosa Bovina/imunologia , Animais , Feminino , Fertilidade , Lactação , Leite , Gravidez
12.
JDS Commun ; 5(2): 129-133, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38482118

RESUMO

The growing demand among dairy producers for suitable beef sires to mate to their females creates the possibility of separate breeding programs to generate beef sires for the dairy sector versus those for the beef sector. Informing such a decision is the extent of the genetic differences among beef sires used by dairy producers relative to those used by beef producers. The objective therefore of the present study was to use a large national database of artificial insemination (AI) records in dairy and beef cow herds to establish the difference in mean genetic merit of beef AI sires used by dairy producers versus those used by cow-calf beef producers. The traits explored were gestation length, calving difficulty, and perinatal mortality as well as the 3 carcass traits of carcass weight, conformation, and fat score. Carcass conformation and fat score are mechanically assessed on a scale of 1 (poor conformation and low fat cover) to 15 (excellent conformation and high fat cover). Sire genetic merit differences for feed intake and docility were also examined. Estimates of genetic merit for all 8 traits on individual AI sires available at the time of service were used. A total of 1,230,622 AI records comprised 909,719 services from dairy herds and 320,903 services from beef herds were used. Of the 1,802 beef AI sires represented in the entire dataset, over half were used by both dairy and beef herds representing ≥98% of the services in each production system. However, the usage rate of individual AI sires differed between dairy and beef herds with the Spearman rank correlation between the quantity of inseminations per sire in dairy and beef herds being just 0.38. This correlation means that beef AI sires used heavily in the beef herd were not always those heavily used in dairy herds. A clear difference in the mean genetic merit of beef AI sires selected by dairy producers relative to those selected by beef cow-calf producers was obvious with the extent of the difference being a function of whether the female served was a nulliparous heifer or a cow. Much of the differences in genetic merit of chosen beef AI sires between dairy and beef producers was actually attributable to differences in breed choice, albeit some within-breed selection was also evident. Irrespective, dairy producers, on average, chose shorter gestation length sires whose progeny were genetically less predisposed to require intervention during the birthing process; these sires had genetic merit estimates expected to result in lighter and less conformed progeny carcasses relative to the beef AI sires used by beef producers. Results point to large differences in genetic merit of the beef AI sires chosen by dairy versus beef producers, much of which actually reflected differences in breed choice among dairy and beef producers.

13.
JDS Commun ; 2(6): 351-355, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36337112

RESUMO

Selection bias is introduced when selection among individuals exists but the information used to inform that selection decision is not considered in downstream genetic evaluations. Genetic evaluations are undertaken in several countries for carcass-related metrics in prime cattle; no consideration is generally taken for animals that are harvested at a younger age for veal production and thus do not express the prime carcass phenotype. Although no veal industry exists in Ireland, dairy calves are routinely exported to continental Europe for veal production. The objective of the present study, based on a cross-sectional analysis of calf export data, was to determine quantitatively if genetic variability exists in whether purchased dairy-bred bull calves are immediately exported or retained within the country for domestic production. Also of interest was whether such a genetic difference was associated with differences in carcass weight, conformation score, and fat score in prime cattle relatives. Editing criteria were imposed to consider only Holstein-Friesian bull calves. Post-editing, the fate of 43,890 Holstein-Friesian bull calves (<100 d of age) was available; variance components for the binary phenotype (sold for export or not) were estimated using both linear and threshold animal models, and genetic correlations with carcass traits from 56,366 prime cattle were estimated. The heritability (standard error) of whether or not a calf was exported was 0.04 (0.01) on the linear scale and 0.07 (0.02) on the threshold scale. Although no explicit maternal genetic effect was detected, the proportion of the phenotypic variance due to maternal effects was 0.03 to 0.07. The genetic correlation (standard error) between the export phenotype with carcass weight, conformation score [scale 1 (poor) to 15 (excellent)], and fat score [scale 1 (thin) to 15 (fat)] in prime cattle was 0.002 (0.12), -0.25 (0.12), and -0.32 (0.11), respectively. The low heritability of the calf export phenotype and lack of a strong genetic correlation with carcass metrics suggest that other calf features might be greater determinants of the eventual fate of the calf. Accounting for the export phenotype in genetic evaluations of carcass traits in prime cattle had a negligible effect on the estimated breeding values for carcass merit.

14.
PLoS One ; 14(2): e0212067, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30763354

RESUMO

Bovine tuberculosis (bTB) is an infectious disease of cattle generally caused by Mycobacterium bovis, a bacterium that can elicit disease humans. Since the 1950s, the objective of the national bTB eradication program in Republic of Ireland was the biological extinction of bTB; that purpose has yet to be achieved. Objectives of the present study were to develop the statistical methodology and variance components to undertake routine genetic evaluations for resistance to bTB; also of interest was the detection of regions of the bovine genome putatively associated with bTB infection in dairy and beef breeds. The novelty of the present study, in terms of research on bTB infection, was the use of beef breeds in the genome-wide association and the utilization of imputed whole genome sequence data. Phenotypic bTB data on 781,270 animals together with imputed whole genome sequence data on 7,346 of these animals' sires were available. Linear mixed models were used to quantify variance components for bTB and EBVs were validated. Within-breed and multi-breed genome-wide associations were undertaken using a single-SNP regression approach. The estimated genetic standard deviation (0.09), heritability (0.12), and repeatability (0.30) substantiate that genetic selection help to eradicate bTB. The multi-breed genome-wide association analysis identified 38 SNPs and 64 QTL regions associated with bTB infection; two QTL regions (both on BTA23) identified in the multi-breed analysis overlapped with the within-breed analyses of Charolais, Limousin, and Holstein-Friesian. Results from the association analysis, coupled with previous studies, suggest bTB is controlled by an infinitely large number of loci, each having a small effect. The methodology and results from the present study will be used to develop national genetic evaluations for bTB in the Republic of Ireland. In addition, results can also be used to help uncover the biological architecture underlying resistance to bTB infection in cattle.


Assuntos
Estudo de Associação Genômica Ampla , Tuberculose Bovina/genética , Sequenciamento Completo do Genoma , Análise de Variância , Animais , Bovinos , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único
15.
J Anim Sci ; 96(1): 35-55, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29385481

RESUMO

Animal mortality is indicative of animal health and welfare standards, which are of growing concern to the agricultural industry. The objective of the present study was to ascertain risk factors associated with mortality at multiple life stages in pasture-based, seasonal-calving dairy and beef herds. Males and females were stratified into seven life stages based on age (0 to 2 d, 3 to 7 d, 8 to 30 d, 31 to 182 d, 183 to 365 d, 366 to 730 d, and 731 to 1,095 d) whereas females with ≥1 calving event were further stratified into five life stages based on cow parity number (1, 2, 3, 4, and 5). Mortality was defined as whether an animal died during each life stage; only animals that either survived the entire duration or died during a life stage were considered. The data, following edits, consisted of 4,404,122 records from 1,358,712 animals. Multivariable logistic regression was used to estimate the logit of the probability of mortality in each life stage separately. The odds of a young animal (i.e., aged ≤ 1,095 d) dying was generally greater if veterinary assistance was required at their birth relative to no assistance (odds ratio [OR]: 3.10 to 31.85), if the animal was a twin relative to a singleton (OR: 1.46 to 2.31) or if the animal was male relative to female (OR: 1.14 to 6.15). Moreover, the odds of a cow (i.e., females with ≥1 calving event) dying were greater when she required veterinary assistance at calving (OR: 2.69 to 7.55) compared with a cow that did not require any assistance, if she produced twin relative to singleton progeny (OR: 1.59 to 2.03) or male relative to female progeny (OR: 1.09 to 1.20). Additionally, the odds of a first or second parity cow dying when she herself had received veterinary assistance at birth were only 0.63 to 0.66 times that of a cow that was provided no assistance at birth. For both young animals and cows, the odds of dying generally increased with herd size, whereas animals residing in expanding herds had lower odds of dying. Results from the present study indicate that the risk factors associated with mortality in pasture-based, seasonal-calving herds are similar to those reported in literature in confinement, nonseasonal-calving herds. Moreover, the present study identifies that these risk factors are similar in both dairy and beef herds, yet the magnitude of the association often differs and also changes with life stage.


Assuntos
Doenças dos Bovinos/mortalidade , Animais , Bovinos , Indústria de Laticínios , Feminino , Modelos Logísticos , Masculino , Razão de Chances , Paridade , Parto , Gravidez , Fatores de Risco , Estações do Ano
16.
Xenobiotica ; 37(5): 459-73, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17523050

RESUMO

The objective of the current study was to investigate the metabolism of cytochrome P450 (CYP) probe substrates in male Sprague Dawley rat liver microsomes and to determine their substrate specificities. Time and microsomal protein concentrations were varied to determine the linear conditions for each reaction. Appropriate substrate concentrations were chosen to determine the apparent K(m) and V(max) for 17 different reactions under initial rate conditions of protein and reaction time. All reactions appeared to follow Michaelis-Menten kinetics. Subsequently, each substrate was incubated at one to two times K(m) with each of 14 baculovirus cDNA-expressed rat CYP enzymes to determine the specificity of the reaction monitored. Of the 14 enzymes tested, seven were seen as the major rat CYP enzymes responsible for the majority of the substrate metabolism tested. Testosterone 2alpha- and 16alpha-hydroxylation reactions were conducted primarily by CYP2C11, and midazolam 4-hydroxylation and triazolam 1'-hydroxylation were preferentially catalyzed by CYP3A1/2, but specificity was otherwise generally poor. The results presented herein clearly indicate that care must be taken in interpretation of metabolism results obtained in rats using standard probe substrates, especially in extrapolation of those results to humans.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Sondas Moleculares/metabolismo , Animais , Catálise , Cromatografia Líquida de Alta Pressão , DNA Complementar , Humanos , Cinética , Masculino , Microssomos Hepáticos/enzimologia , Ratos , Ratos Sprague-Dawley , Especificidade por Substrato
17.
Fundam Appl Toxicol ; 39(2): 101-8, 1997 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9344622

RESUMO

Treatment of rats with para-aminophenol (PAP) (300 mg/kg ip) produced decreases in renal nonprotein sulfhydryl (NPSH) content, oxygen consumption, and adenine nucleotide concentrations 2-4 hr following administration. In contrast, incubation of rat renal tubules with up to 1 mm PAP for 4 hr produced inconsistent changes in renal tubules. This discrepancy suggested that extrarenal metabolism of PAP may be involved in PAP bioactivation and nephrotoxicity. We designed the present studies to test the hypothesis that hepatic metabolism of PAP potentiates the effects of PAP on renal tubules. Incubation of renal tubules with 0.5 mm PAP and 10 mg protein from hepatic postmitochondrial supernatant (S9 fraction) in the absence of glutathione (GSH) for 4 hr did not alter renal oxygen consumption or adenine nucleotide metabolite concentrations. We observed no changes when we incubated tubules with 0.5 mm PAP and 1 mm GSH in the absence of hepatic S9 fraction. However, incubation of renal tubules with 0.5 mm PAP, 1 mm GSH, and 10 mg hepatic S9 protein for 4 hr significantly decreased renal oxygen consumption and adenosine triphosphate and total nucleotide concentrations. These data suggest that the effects of PAP in renal tubules may be potentiated by enzymatic metabolism of PAP, possibly involving oxidation and GSH conjugation. From experiments using hepatic microsomes or cytosol instead of S9 fraction, we found that changes were produced when we incubated tubules with PAP in the presence of hepatic microsomes, but not cytosol. These data suggest that hepatic microsomal metabolism of PAP may contribute to the production of changes in renal tubules in vitro. PAP-induced changes in renal proximal tubules were prevented when we included a beta-nicotinamide adenine dinucleotide phosphate (NADPH) generating system in the incubation medium. The protective effect of NADPH persisted when microsomes were inactivated by incubation with 1-aminobenzotriazole, a cytochrome P450 inhibitor. These data suggest that cytochrome P450-dependent oxidation is not involved in the production or prevention of PAP-induced changes in renal tubules. The enzyme(s) responsible for PAP bioactivation and the mechanism(s) by which NADPH protects renal tubules from PAP-induced decrements in oxygen consumption and adenine nucleotide concentrations are currently unclear.


Assuntos
Aminofenóis/toxicidade , Inibidores das Enzimas do Citocromo P-450 , Túbulos Renais Proximais/efeitos dos fármacos , Fígado/metabolismo , Nucleotídeos de Adenina/metabolismo , Animais , Biotransformação , Feminino , Glutationa/farmacologia , Técnicas In Vitro , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Fígado/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , NADP/farmacologia , Oxirredução , Consumo de Oxigênio/efeitos dos fármacos , Proteínas Associadas a Pancreatite , Ratos , Ratos Sprague-Dawley , Compostos de Sulfidrila/metabolismo , Triazóis/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA