Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Mol Ecol ; 32(11): 2898-2912, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36847070

RESUMO

Telomeres, the short DNA sequences that protect chromosome ends, are an ancient molecular structure, which is highly conserved across most eukaryotes. Species differ in their telomere lengths, but the causes of this variation are not well understood. Here, we demonstrate that mean early-life telomere length is an evolutionary labile trait across 57 bird species (representing 35 families in 12 orders) with the greatest trait diversity found among passerines. Among these species, telomeres are significantly shorter in fast-lived than in slow-lived species, suggesting that telomere length may have evolved to mediate trade-offs between physiological requirements underlying the diversity of pace-of-life strategies in birds. This association was attenuated when excluding studies that may include interstitial telomeres in the estimation of mean telomere length. Curiously, within some species, larger individual chromosome size predicts longer telomere lengths on that chromosome, leading to the hypothesis that telomere length also covaries with chromosome length across species. We show that longer mean chromosome length or genome size tends to be associated with longer mean early-life telomere length (measured across all chromosomes) within a phylogenetic framework constituting up to 31 bird species. These associations were strengthened when excluding highly influential outliers. However, sensitivity analyses suggested that they were susceptible to sample size effects and not robust to the exclusion of studies that may include interstitial telomeres. Combined, our analyses generalize patterns previously found within a few species and provide potential adaptive explanations for the 10-fold variation in telomere lengths observed among birds.


Assuntos
Aves , Estruturas Cromossômicas , Características de História de Vida , Filogenia , Homeostase do Telômero , Aves/classificação , Aves/genética , Animais , Estruturas Cromossômicas/genética , Tamanho do Genoma/genética , Análise Citogenética
2.
J Evol Biol ; 36(4): 650-662, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36811205

RESUMO

An organism's energy budget is strongly related to resource consumption, performance, and fitness. Hence, understanding the evolution of key energetic traits, such as basal metabolic rate (BMR), in natural populations is central for understanding life-history evolution and ecological processes. Here we used quantitative genetic analyses to study evolutionary potential of BMR in two insular populations of the house sparrow (Passer domesticus). We obtained measurements of BMR and body mass (Mb ) from 911 house sparrows on the islands of Leka and Vega along the coast of Norway. These two populations were the source populations for translocations to create an additional third, admixed 'common garden' population in 2012. With the use of a novel genetic group animal model concomitant with a genetically determined pedigree, we differentiate genetic and environmental sources of variation, thereby providing insight into the effects of spatial population structure on evolutionary potential. We found that the evolutionary potential of BMR was similar in the two source populations, whereas the Vega population had a somewhat higher evolutionary potential of Mb than the Leka population. BMR was genetically correlated with Mb in both populations, and the conditional evolutionary potential of BMR (independent of body mass) was 41% (Leka) and 53% (Vega) lower than unconditional estimates. Overall, our results show that there is potential for BMR to evolve independently of Mb , but that selection on BMR and/or Mb may have different evolutionary consequences in different populations of the same species.


Assuntos
Animais Selvagens , Metabolismo Basal , Animais , Aves , Fenótipo
3.
Proc Natl Acad Sci U S A ; 117(25): 14584-14592, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513746

RESUMO

Inbreeding may increase the extinction risk of small populations. Yet, studies using modern genomic tools to investigate inbreeding depression in nature have been limited to single populations, and little is known about the dynamics of inbreeding depression in subdivided populations over time. Natural populations often experience different environmental conditions and differ in demographic history and genetic composition, characteristics that can affect the severity of inbreeding depression. We utilized extensive long-term data on more than 3,100 individuals from eight islands in an insular house sparrow metapopulation to examine the generality of inbreeding effects. Using genomic estimates of realized inbreeding, we discovered that inbred individuals had lower survival probabilities and produced fewer recruiting offspring than noninbred individuals. Inbreeding depression, measured as the decline in fitness-related traits per unit inbreeding, did not vary appreciably among populations or with time. As a consequence, populations with more resident inbreeding (due to their demographic history) paid a higher total fitness cost, evidenced by a larger variance in fitness explained by inbreeding within these populations. Our results are in contrast to the idea that effects of inbreeding generally depend on ecological factors and genetic differences among populations, and expand the understanding of inbreeding depression in natural subdivided populations.


Assuntos
Aptidão Genética/fisiologia , Depressão por Endogamia/fisiologia , Pardais/fisiologia , Animais , Feminino , Masculino , Linhagem , Dinâmica Populacional , Análise Espaço-Temporal
4.
Mol Ecol ; 31(23): 6224-6238, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34997994

RESUMO

Telomere dynamics could underlie life-history trade-offs among growth, size and longevity, but our ability to quantify such processes in natural, unmanipulated populations is limited. We investigated how 4 years of artificial selection for either larger or smaller tarsus length, a proxy for body size, affected early-life telomere length (TL) and several components of fitness in two insular populations of wild house sparrows over a study period of 11 years. The artificial selection was expected to shift the populations away from their optimal body size and increase the phenotypic variance in body size. Artificial selection for larger individuals caused TL to decrease, but there was little evidence that TL increased when selecting for smaller individuals. There was a negative correlation between nestling TL and tarsus length under both selection regimes. Males had longer telomeres than females and there was a negative effect of harsh weather on TL. We then investigated whether changes in TL might underpin fitness effects due to the deviation from the optimal body size. Mortality analyses indicated disruptive selection on TL because both short and long early-life telomeres tended to be associated with the lowest mortality rates. In addition, there was a tendency for a negative association between TL and annual reproductive success, but only in the population where body size was increased experimentally. Our results suggest that natural selection for optimal body size in the wild may be associated with changes in TL during growth, which is known to be linked to longevity in some bird species.


Assuntos
Longevidade , Passeriformes , Humanos , Masculino , Feminino , Animais , Longevidade/genética , Seleção Genética , Telômero , Passeriformes/genética , Encurtamento do Telômero/genética
5.
Mol Ecol ; 31(23): 6360-6381, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34825754

RESUMO

Early-life telomere length (TL) is associated with fitness in a range of organisms. Little is known about the genetic basis of variation in TL in wild animal populations, but to understand the evolutionary and ecological significance of TL it is important to quantify the relative importance of genetic and environmental variation in TL. In this study, we measured TL in 2746 house sparrow nestlings sampled across 20 years and used an animal model to show that there is a small heritable component of early-life TL (h2  = 0.04). Variation in TL among individuals was mainly driven by environmental (annual) variance, but also brood and parental effects. Parent-offspring regressions showed a large maternal inheritance component in TL ( h maternal 2  = 0.44), but no paternal inheritance. We did not find evidence for a negative genetic correlation underlying the observed negative phenotypic correlation between TL and structural body size. Thus, TL may evolve independently of body size and the negative phenotypic correlation is likely to be caused by nongenetic environmental effects. We further used genome-wide association analysis to identify genomic regions associated with TL variation. We identified several putative genes underlying TL variation; these have been inferred to be involved in oxidative stress, cellular growth, skeletal development, cell differentiation and tumorigenesis in other species. Together, our results show that TL has a low heritability and is a polygenic trait strongly affected by environmental conditions in a free-living bird.


Assuntos
Estudo de Associação Genômica Ampla , Passeriformes , Animais , Longevidade/genética , Telômero/genética , Passeriformes/genética
6.
Ecol Lett ; 24(10): 2077-2087, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34312969

RESUMO

Generation time determines the pace of key demographic and evolutionary processes. Quantified as the weighted mean age at reproduction, it can be studied as a life-history trait that varies within and among populations and may evolve in response to ecological conditions. We combined quantitative genetic analyses with age- and density-dependent models to study generation time variation in a bird metapopulation. Generation time was heritable, and males had longer generation times than females. Individuals with longer generation times had greater lifetime reproductive success but not a higher expected population growth rate. Density regulation acted on recruit production, suggesting that longer generation times should be favoured when populations are closer to carrying capacity. Furthermore, generation times were shorter when populations were growing and longer when populations were closer to equilibrium or declining. These results support classic theory predicting that density regulation is an important driver of the pace of life-history strategies.


Assuntos
Evolução Biológica , Características de História de Vida , Animais , Aves , Feminino , Humanos , Masculino , Crescimento Demográfico , Reprodução
7.
Mol Ecol ; 30(19): 4740-4756, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34270821

RESUMO

Dispersal has a crucial role determining ecoevolutionary dynamics through both gene flow and population size regulation. However, to study dispersal and its consequences, one must distinguish immigrants from residents. Dispersers can be identified using telemetry, capture-mark-recapture (CMR) methods, or genetic assignment methods. All of these methods have disadvantages, such as high costs and substantial field efforts needed for telemetry and CMR surveys, and adequate genetic distance required in genetic assignment. In this study, we used genome-wide 200K Single Nucleotide Polymorphism data and two different genetic assignment approaches (GSI_SIM, Bayesian framework; BONE, network-based estimation) to identify the dispersers in a house sparrow (Passer domesticus) metapopulation sampled over 16 years. Our results showed higher assignment accuracy with BONE. Hence, we proceeded to diagnose potential sources of errors in the assignment results from the BONE method due to variation in levels of interpopulation genetic differentiation, intrapopulation genetic variation and sample size. We show that assignment accuracy is high even at low levels of genetic differentiation and that it increases with the proportion of a population that has been sampled. Finally, we highlight that dispersal studies integrating both ecological and genetic data provide robust assessments of the dispersal patterns in natural populations.


Assuntos
Pardais , Animais , Teorema de Bayes , Deriva Genética , Linhagem , Densidade Demográfica , Pardais/genética
8.
J Anim Ecol ; 90(12): 2767-2781, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34455579

RESUMO

The effects of spatial structure on metapopulation dynamics depend upon the interaction between local population dynamics and dispersal, and how this relationship is affected by the geographical isolation and spatial heterogeneity in habitat characteristics. Our aim is to examine how emigration and immigration of house sparrows Passer domesticus in a Norwegian archipelagic metapopulation are affected by key factors predicted by classic metapopulation models to affect dispersal-spatial and temporal variation in population size, inter-island distance, local demography and habitat characteristics. This metapopulation can be divided into two major habitat types: (a) islands closer to the mainland where sparrows breed in colonies on farms, and (b) islands without farms, situated farther away from the mainland where sparrows are exposed to harsher environmental conditions. Dispersal was spatially structured within the metapopulation; there was proportionally and numerically less emigration and immigration involving farm islands, as compared to non-farm islands. Furthermore, emigration and immigration occurred mostly between nearby islands. Moreover, emigration in response to spatial differences in mean population size differed between the habitat types, but populations with large mean received more immigrants in both habitat types. The number of emigrants and immigrants was negatively related to long-term recruit production, which was not the case in non-farm islands. The proportion and number of emigrants was positively related to temporal increases in recruit production on farm islands, however not on non-farm islands. Our results demonstrate that spatial heterogeneity in environmental conditions influences how spatial variation in long-term mean population size, and temporal and spatial variation in recruit production, affects dispersal dynamics. The spatial structure of this metapopulation is therefore best described by a spatially explicit model in which the exchange of individuals within each habitat type is strongly affected by the degree of geographical isolation, population size and recruit production. However, these relationships differed between the two habitat types; non-farm islands showing similarities to a mainland-island model type of structure, whereas farm islands showed features more associated with source-sink or balanced dispersal models. Such differential dispersal dynamics between habitat types are expected to have important consequences for the ecological and evolutionary dynamics within this metapopulation.


Assuntos
Pardais , Animais , Ecossistema , Noruega , Densidade Demográfica , Dinâmica Populacional
9.
Mol Ecol ; 29(20): 3812-3829, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32474990

RESUMO

Host-parasite relationships are likely to change over the coming decades in response to climate change and increased anthropogenic stressors. Understanding the genetic architecture of parasite resistance will aid prediction of species' responses to intensified parasite challenge. The gapeworm "Syngamus trachea" is prevalent in natural bird populations and causes symptomatic infections ranging from mild to severe. The parasite may affect ecological processes by curtailing bird populations and is important due to its propensity to spread to commercially farmed birds. Our large-scale data set on an insular house sparrow metapopulation in northern Norway includes information on gapeworm prevalence and infection intensity, allowing assessment of the genetics of parasite resistance in a natural system. To determine whether parasite resistance has a heritable genetic component, we performed variance component analyses using animal models. Resistance to gapeworm had substantial additive genetic and dominance variance, and genome-wide association studies to identify single nucleotide polymorphisms associated with gapeworm resistance yielded multiple loci linked to immune function. Together with genome partitioning results, this indicates that resistance to gapeworm is under polygenic control in the house sparrow, and probably in other bird species. Hence, our results provide the foundation needed to study any eco-evolutionary processes related to gapeworm infection, and show that it is necessary to use methods suitable for polygenic and nonadditive genetic effects on the phenotype.


Assuntos
Parasitos , Pardais , Animais , Estudo de Associação Genômica Ampla , Noruega , Fenótipo , Pardais/genética
10.
Mol Ecol ; 27(17): 3498-3514, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30040161

RESUMO

Understanding the genetic architecture of quantitative traits can provide insights into the mechanisms driving phenotypic evolution. Bill morphology is an ecologically important and phenotypically variable trait, which is highly heritable and closely linked to individual fitness. Thus, bill morphology traits are suitable candidates for gene mapping analyses. Previous studies have revealed several genes that may influence bill morphology, but the similarity of gene and allele effects between species and populations is unknown. Here, we develop a custom 200K SNP array and use it to examine the genetic basis of bill morphology in 1857 house sparrow individuals from a large-scale, island metapopulation off the coast of Northern Norway. We found high genomic heritabilities for bill depth and length, which were comparable with previous pedigree estimates. Candidate gene and genomewide association analyses yielded six significant loci, four of which have previously been associated with craniofacial development. Three of these loci are involved in bone morphogenic protein (BMP) signalling, suggesting a role for BMP genes in regulating bill morphology. However, these loci individually explain a small amount of variance. In combination with results from genome partitioning analyses, this indicates that bill morphology is a polygenic trait. Any studies of eco-evolutionary processes in bill morphology are therefore dependent on methods that can accommodate polygenic inheritance of the phenotype and molecular-scale evolution of genetic architecture.


Assuntos
Bico/anatomia & histologia , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Pardais/genética , Animais , Estudos de Associação Genética , Modelos Genéticos , Noruega , Fenótipo , Análise de Componente Principal , Pardais/anatomia & histologia
11.
Mol Ecol ; 26(9): 2449-2465, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28207173

RESUMO

The ratio between the effective and the census population size, Ne/N, is an important measure of the long-term viability and sustainability of a population. Understanding which demographic processes that affect Ne/N most will improve our understanding of how genetic drift and the probability of fixation of alleles is affected by demography. This knowledge may also be of vital importance in management of endangered populations and species. Here, we use data from 13 natural populations of house sparrow (Passer domesticus) in Norway to calculate the demographic parameters that determine Ne/N. Using the global variance-based Sobol' method for the sensitivity analyses, we found that Ne/N was most sensitive to demographic variance, especially among older individuals. Furthermore, the individual reproductive values (that determine the demographic variance) were most sensitive to variation in fecundity. Our results draw attention to the applicability of sensitivity analyses in population management and conservation. For population management aiming to reduce the loss of genetic variation, a sensitivity analysis may indicate the demographic parameters towards which resources should be focused. The result of such an analysis may depend on the life history and mating system of the population or species under consideration, because the vital rates and sex-age classes that Ne/N is most sensitive to may change accordingly.


Assuntos
Deriva Genética , Pardais/genética , Animais , Conservação dos Recursos Naturais , Demografia , Fertilidade , Variação Genética , Noruega , Densidade Demográfica
12.
Proc Biol Sci ; 282(1820): 20152331, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26631569

RESUMO

Evolution of body size is likely to involve trade-offs between body size, growth rate and longevity. Within species, larger body size is associated with faster growth and ageing, and reduced longevity, but the cellular processes driving these relationships are poorly understood. One mechanism that might play a key role in determining optimal body size is the relationship between body size and telomere dynamics. However, we know little about how telomere length is affected when selection for larger size is imposed in natural populations. We report here on the relationship between structural body size and telomere length in wild house sparrows at the beginning and end of a selection regime for larger parent size that was imposed for 4 years in an isolated population of house sparrows. A negative relationship between fledgling size and telomere length was present at the start of the selection; this was extended when fledgling size increased under the selection regime, demonstrating a persistent covariance between structural size and telomere length. Changes in telomere dynamics, either as a correlated trait or a consequence of larger size, could reduce potential longevity and the consequent trade-offs could thereby play an important role in the evolution of optimal body size.


Assuntos
Tamanho Corporal/genética , Pardais/genética , Telômero , Animais , Masculino , Seleção Genética
13.
Mol Ecol ; 23(11): 2653-68, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24766660

RESUMO

Effective population size (N(e)) is a key parameter to understand evolutionary processes and the viability of endangered populations as it determines the rate of genetic drift and inbreeding. Low Ne can lead to inbreeding depression and reduced population adaptability. In this study, we estimated contemporary N(e) using genetic estimators (LDNE, ONeSAMP, MLNE and CoNe) as well as a demographic estimator in a natural insular house sparrow metapopulation. We investigated whether population characteristics (population size, sex ratio, immigration rate, variance in population size and population growth rate) explained variation within and among populations in the ratio of effective to census population size (N(e)/N(c)). In general, N(e)/N(c) ratios increased with immigration rates. Genetic N(e) was much larger than demographic N(e), probably due to a greater effect of immigration on genetic than demographic processes in local populations. Moreover, although estimates of genetic N(e) seemed to track N(c) quite well, the genetic N(e) -estimates were often larger than Nc within populations. Estimates of genetic N(e) for the metapopulation were however within the expected range (

Assuntos
Genética Populacional , Pardais/genética , Animais , Fluxo Gênico , Deriva Genética , Endogamia , Modelos Genéticos , Noruega , Densidade Demográfica , Dinâmica Populacional , Razão de Masculinidade
14.
Ecol Evol ; 14(5): e11356, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38694748

RESUMO

The house sparrow (Passer domesticus) is a small passerine known to be highly sedentary. Throughout a 30-year capture-mark-recapture study, we have obtained occasional reports of recoveries far outside our main metapopulation study system, documenting unusually long dispersal distances. Our records constitute the highest occurrence of long-distance dispersal events recorded for this species in Scandinavia. Such long-distance dispersals radically change the predicted distribution of dispersal distances and connectedness for our study metapopulation. Moreover, it reveals a much greater potential for colonization than formerly recorded for the house sparrow, which is an invasive species across four continents. These rare and occasional long-distance dispersal events are challenging to document but may have important implications for the genetic composition of small and isolated populations and for our understanding of dispersal ecology and evolution.

15.
Oecologia ; 171(2): 391-402, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22955631

RESUMO

Propagule size represents an important life-history trait under maternal control. Despite a positive relationship between propagule size and components of fitness, propagule size displays tremendous amounts of variation which causes are poorly understood within natural populations. With a study of a house sparrows Passer domesticus, we investigate maternal and environmental correlates of egg size, quantify variation in egg size within and between females and broods, and estimate heritability. Egg size had a curvilinear relationship with clutch size and decreased significantly in subsequent broods within seasons. Furthermore, egg size increased with maternal body mass, was positively affected by spring temperatures and curvilinearly related to temperature during the 2 weeks prior to egg laying. Some 46.4 % of variation in egg size was due to differences between females, and 21.9 % was explained by variation between broods by the same female. The heritability of egg size was low (h (2) = 0.26) compared to estimates from other studies (h (2) > 0.6). The present study challenges the recent idea that egg size is an inflexible maternal characteristic with very high additive genetic variance, and suggests that females are subject to both intrinsic and extrinsic constraints prior to and during egg formation, leading to the observed plasticity in egg size. In a general sense, propagule size could be expected to be both limited by and adaptively adjusted in accordance to prevailing environmental conditions.


Assuntos
Ovos , Passeriformes/fisiologia , Reprodução/fisiologia , Animais , Tamanho da Ninhada , Meio Ambiente , Feminino , Variação Genética , Dinâmica Populacional , Estações do Ano , Temperatura
16.
Parasitology ; 140(10): 1275-86, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23790222

RESUMO

When investigating parasite-host dynamics in wild populations, a fundamental parameter to investigate is prevalence. This quantifies the percentage of individuals infected in the population. Investigating how prevalence changes over time and space can reveal interesting aspects in the parasite-host relationship in natural populations. We investigated the dynamic between a common avian parasite (Syngamus trachea) in a host metapopulation of house sparrows (Passer domesticus) on the coast of Helgeland in northern Norway. We found that parasite prevalence varied in both time and space. In addition, the parasite prevalence was found to be different between demographic groups in the local populations. Our results reveal just how complex the dynamic between a host and its parasite may become in a fragmented landscape. Although temperature may be an important factor, the specific mechanisms causing this complexity are not fully understood, but need to be further examined to understand how parasite-host interactions may affect the ecological and evolutionary dynamics and viability of host populations.


Assuntos
Doenças das Aves/parasitologia , Interações Hospedeiro-Parasita , Pardais/parasitologia , Infecções por Strongylida/epidemiologia , Strongyloidea/fisiologia , Animais , Noruega , Dinâmica Populacional , Prevalência , Fatores de Tempo
17.
R Soc Open Sci ; 10(5): 221427, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37234506

RESUMO

Optimization of clutch size and timing of reproduction have substantial effects on lifetime reproductive success in vertebrates, and both individual quality and environmental variation may impact life history strategies. We tested hypotheses related to maternal investment and timing of reproduction, using 17 years (1978-1994) of individual-based life history data on willow ptarmigan (Lagopus l. lagopus, n = 290 breeding females with n = 319 breeding attempts) in central Norway. We analysed whether climatic variation and individual state variables (age and body mass) affected the number of offspring and timing of reproduction, and individual repeatability in strategies. The results suggest that willow ptarmigan share a common optimal clutch size that is largely independent of measured individual states. While we found no clear direct weather effects on clutch size, higher spring temperatures advanced onset of breeding, and early breeding was followed by an increased number of offspring. Warmer springs were positively related to maternal mass, and mass interacted with clutch size in production of hatchlings. Finally, clutch size and timing of reproduction were highly repeatable within individuals, indicating that individual quality guided trade-offs in reproductive effort. Our results demonstrate how climatic forcing and individual heterogeneity in combination influenced life history traits in a resident montane keystone species.

18.
Sci Rep ; 13(1): 4272, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922555

RESUMO

Telomeres, the nucleotide sequences that protect the ends of eukaryotic chromosomes, shorten with each cell division and telomere loss may be influenced by environmental factors. Telomere length (TL) decreases with age in several species, but little is known about the sources of genetic and environmental variation in the change in TL (∆TL) in wild animals. In this study, we tracked changes in TL throughout the natural lifespan (from a few months to almost 9 years) of free-living house sparrows (Passer domesticus) in two different island populations. TL was measured in nestlings and subsequently up to four times during their lifetime. TL generally decreased with age (senescence), but we also observed instances of telomere lengthening within individuals. We found some evidence for selective disappearance of individuals with shorter telomeres through life. Early-life TL positively predicted later-life TL, but the within-individual repeatability in TL was low (9.2%). Using genetic pedigrees, we found a moderate heritability of ∆TL (h2 = 0.21), which was higher than the heritabilities of early-life TL (h2 = 0.14) and later-life TL measurements (h2 = 0.15). Cohort effects explained considerable proportions of variation in early-life TL (60%), later-life TL (53%), and ∆TL (37%), which suggests persistent impacts of the early-life environment on lifelong telomere dynamics. Individual changes in TL were independent of early-life TL. Finally, there was weak evidence for population differences in ∆TL that may be linked to ecological differences in habitat types. Combined, our results show that individual telomere biology is highly dynamic and influenced by both genetic and environmental variation in natural conditions.


Assuntos
Animais Selvagens , Longevidade , Animais , Animais Selvagens/genética , Longevidade/genética , Aves/genética , Homeostase do Telômero , Encurtamento do Telômero/genética , Telômero/genética
19.
Proc Biol Sci ; 279(1726): 144-52, 2012 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21613299

RESUMO

Dispersal plays a key role in the response of populations to climate change and habitat fragmentation. Here, we use data from a long-term metapopulation study of a non-migratory bird, the house sparrow (Passer domesticus), to examine the influence of increasing spring temperature and density-dependence on natal dispersal rates and how these relationships depend on spatial variation in habitat quality. The effects of spring temperature and population size on dispersal rate depended on the habitat quality. Dispersal rate increased with temperature and population size on poor-quality islands without farms, where house sparrows were more exposed to temporal fluctuations in weather conditions and food availability. By contrast, dispersal rate was independent of spring temperature and population size on high-quality islands with farms, where house sparrows had access to food and shelter all the year around. This illustrates large spatial heterogeneity within the metapopulation in how population density and environmental fluctuations affect the dispersal process.


Assuntos
Mudança Climática , Reprodução , Pardais/fisiologia , Animais , Regiões Árticas , Clima Frio , Ecossistema , Noruega , Densidade Demográfica , Dinâmica Populacional , Estações do Ano
20.
J Anim Ecol ; 81(4): 756-69, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22320218

RESUMO

1. We develop a Bayesian method for analysing mark-recapture data in continuous habitat using a model in which individuals movement paths are Brownian motions, life spans are exponentially distributed and capture events occur at given instants in time if individuals are within a certain attractive distance of the traps. 2. The joint posterior distribution of the dispersal rate, longevity, trap attraction distances and a number of latent variables representing the unobserved movement paths and time of death of all individuals is computed using Gibbs sampling. 3. An estimate of absolute local population density is obtained simply by dividing the Poisson counts of individuals captured at given points in time by the estimated total attraction area of all traps. Our approach for estimating population density in continuous habitat avoids the need to define an arbitrary effective trapping area that characterized previous mark-recapture methods in continuous habitat. 4. We applied our method to estimate spatial demography parameters in nine species of neotropical butterflies. Path analysis of interspecific variation in demographic parameters and mean wing length revealed a simple network of strong causation. Larger wing length increases dispersal rate, which in turn increases trap attraction distance. However, higher dispersal rate also decreases longevity, thus explaining the surprising observation of a negative correlation between wing length and longevity.


Assuntos
Teorema de Bayes , Borboletas/fisiologia , Longevidade , Modelos Biológicos , Migração Animal , Animais , Demografia , Ecossistema , Equador , Movimento , Densidade Demográfica , Dinâmica Populacional , Estações do Ano , Especificidade da Espécie , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA