Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Thorax ; 75(11): 974-981, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32826284

RESUMO

INTRODUCTION: Procalcitonin expression is thought to be stimulated by bacteria and suppressed by viruses via interferon signalling. Consequently, during respiratory viral illness, clinicians often interpret elevated procalcitonin as evidence of bacterial coinfection, prompting antibiotic administration. We sought to evaluate the validity of this practice and the underlying assumption that viral infection inhibits procalcitonin synthesis. METHODS: We conducted a retrospective cohort study of patients hospitalised with pure viral infection (n=2075) versus bacterial coinfection (n=179). The ability of procalcitonin to distinguish these groups was assessed. In addition, procalcitonin and interferon gene expression were evaluated in murine and cellular models of influenza infection. RESULTS: Patients with bacterial coinfection had higher procalcitonin than those with pure viral infection, but also more severe disease and higher mortality (p<0.001). After matching for severity, the specificity of procalcitonin for bacterial coinfection dropped substantially, from 72% to 61%. In fact, receiver operating characteristic curve analysis showed that procalcitonin was a better indicator of multiple indices of severity (eg, organ failures and mortality) than of coinfection. Accordingly, patients with severe viral infection had elevated procalcitonin. In murine and cellular models of influenza infection, procalcitonin was also elevated despite bacteriologic sterility and correlated with markers of severity. Interferon signalling did not abrogate procalcitonin synthesis. DISCUSSION: These studies reveal that procalcitonin rises during pure viral infection in proportion to disease severity and is not suppressed by interferon signalling, in contrast to prior models of procalcitonin regulation. Applied clinically, our data suggest that procalcitonin represents a better indicator of disease severity than bacterial coinfection during viral respiratory infection.


Assuntos
Biomarcadores/metabolismo , Pneumonia Viral/metabolismo , Pró-Calcitonina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Coinfecção , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Pneumonia Bacteriana/metabolismo , Pneumonia Bacteriana/mortalidade , Pneumonia Viral/mortalidade , Estudos Retrospectivos , Índice de Gravidade de Doença
2.
Eur Clin Respir J ; 10(1): 2174640, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36815942

RESUMO

Background: Patients hospitalized with COVID-19 are at significant risk for superimposed bacterial pneumonia. However, diagnosing superinfection is challenging due to its clinical resemblance to severe COVID-19. We therefore evaluated whether the immune biomarker, procalcitonin, could facilitate the diagnosis of bacterial superinfection. Methods: We retrospectively identified 185 patients hospitalized with severe COVID-19 who underwent lower respiratory culture; 85 had evidence of bacterial superinfection. Receiver operating characteristic curve and area under the curve (AUC) analyses were performed to assess the utility of procalcitonin for diagnosing superinfection. Results: This approach demonstrated that procalcitonin measured at the time of culture was incapable of distinguishing patients with bacterial infection (AUC, 0.52). The AUC not affected by exposure to antibiotics, treatment with immunomodulatory agents, or timing of procalcitonin measurement. Conclusion: Static measurement of procalcitonin does not aid in the diagnosis of superinfection in severe COVID-19.

3.
Arthritis Rheumatol ; 72(11): 1905-1915, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32602227

RESUMO

OBJECTIVE: Systemic sclerosis-associated interstitial lung disease (SSc-ILD) is characterized by variable clinical outcomes, activation of innate immune pattern-recognition receptors (PRRs), and accumulation of α-smooth muscle actin (α-SMA)-expressing myofibroblasts. The aim of this study was to identify an association between these entities and mitochondrial DNA (mtDNA), an endogenous ligand for the intracellular DNA-sensing PRRs Toll-like receptor 9 (TLR-9) and cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING), which has yet to be determined. METHODS: Human lung fibroblasts (HLFs) from normal donors and SSc-ILD explants were treated with synthetic CpG DNA and assayed for α-SMA expression and extracellular mtDNA using quantitative polymerase chain reaction for the human MT-ATP6 gene. Plasma MT-ATP6 concentrations were evaluated in 2 independent SSc-ILD cohorts and demographically matched controls. The ability of SSc-ILD and control plasma to induce TLR-9 and cGAS/STING activation was evaluated with commercially available HEK 293 reporter cells. Plasma concentrations of type I interferons (IFNs), interleukin-6 (IL-6), and oxidized DNA were measured using electrochemiluminescence and enzyme-linked immunosorbent assay-based methods. Extracellular vesicles (EVs) precipitated from plasma were evaluated for MT-ATP6 concentrations and proteomics via liquid chromatography mass spectrometry. RESULTS: Normal HLFs and SSc-ILD fibroblasts developed increased α-SMA expression and MT-ATP6 release following CpG stimulation. Plasma mtDNA concentrations were increased in the 2 SSc-ILD cohorts, reflective of ventilatory decline, and were positively associated with both TLR-9 and cGAS/STING activation as well as type I IFN and IL-6 expression. Plasma mtDNA was not oxidized and was conveyed by EVs displaying a proteomics profile consistent with a multicellular origin. CONCLUSION: These findings demonstrate a previously unrecognized connection between EV-encapsulated mtDNA, clinical outcomes, and intracellular DNA-sensing PRR activation in SSc-ILD. Further study of these interactions could catalyze novel mechanistic and therapeutic insights into SSc-ILD and related disorders.


Assuntos
DNA Mitocondrial/sangue , Doenças Pulmonares Intersticiais/sangue , Escleroderma Sistêmico/sangue , Actinas/metabolismo , Citocinas/metabolismo , Progressão da Doença , Feminino , Fibroblastos/metabolismo , Células HEK293 , Humanos , Doenças Pulmonares Intersticiais/etiologia , Masculino , Escleroderma Sistêmico/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA