Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(24): 6846-6855, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37800369

RESUMO

Crop residues are important inputs of carbon (C) and nitrogen (N) to soils and thus directly and indirectly affect nitrous oxide (N2 O) emissions. As the current inventory methodology considers N inputs by crop residues as the sole determining factor for N2 O emissions, it fails to consider other underlying factors and processes. There is compelling evidence that emissions vary greatly between residues with different biochemical and physical characteristics, with the concentrations of mineralizable N and decomposable C in the residue biomass both enhancing the soil N2 O production potential. High concentrations of these components are associated with immature residues (e.g., cover crops, grass, legumes, and vegetables) as opposed to mature residues (e.g., straw). A more accurate estimation of the short-term (months) effects of the crop residues on N2 O could involve distinguishing mature and immature crop residues with distinctly different emission factors. The medium-term (years) and long-term (decades) effects relate to the effects of residue management on soil N fertility and soil physical and chemical properties, considering that these are affected by local climatic and soil conditions as well as land use and management. More targeted mitigation efforts for N2 O emissions, after addition of crop residues to the soil, are urgently needed and require an improved methodology for emission accounting. This work needs to be underpinned by research to (1) develop and validate N2 O emission factors for mature and immature crop residues, (2) assess emissions from belowground residues of terminated crops, (3) improve activity data on management of different residue types, in particular immature residues, and (4) evaluate long-term effects of residue addition on N2 O emissions.


Assuntos
Produtos Agrícolas , Óxido Nitroso , Óxido Nitroso/análise , Solo/química , Poaceae , Biomassa , Nitrogênio/análise , Agricultura , Fertilizantes
2.
Data Brief ; 53: 110201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38435740

RESUMO

The article presents relevant data from a long-term field experiment in Norway, comparing anaerobically digested and undigested slurry from organically managed dairy cows since 2011. Both the undigested and digested slurry originated from the same herd of cows and heifers. The dataset includes chemical analyses of slurry, soil characteristics at plot level of pH, extractable nutrients, and loss on ignition; crop yields, botanical composition (some years), and plant mineral composition (some years). These data supplement the findings presented and discussed in the research article Anaerobic digestion of dairy cattle slurry - long-term effects on crop yields and chemical soil characteristics[1].

3.
Data Brief ; 43: 108352, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35712368

RESUMO

This article presents the detailed data of the soil characteristics, field management, amount and N content of below- (roots +crown) and aboveground (stubble and herbage) grass mixture, red clover and red clover grass swards at the end of the 3rd production year, together with fluxes of greenhouse gas emissions (N2O, CO2, CH4) and soil air composition (CO2, N2O, CH4, N2 and O2) of a field experiment in Norway. These data supplement the findings presented in the research article " Roots and other residues from ley with or without red clover: quality and effects on N2O Emission Factor in a partly frozen soil following autumn ploughing"(Bleken et al. 2022). For understanding of the effects of incorporating ley above- and belowground residues on cumulative greenhouse emissions refer to article from this research.

4.
Sci Total Environ ; 828: 154388, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35276154

RESUMO

Crop residues are of crucial importance to maintain or even increase soil carbon stocks and fertility, and thereby to address the global challenge of climate change mitigation. However, crop residues can also potentially stimulate emissions of the greenhouse gas nitrous oxide (N2O) from soils. A better understanding of how to mitigate N2O emissions due to crop residue management while promoting positive effects on soil carbon is needed to reconcile the opposing effects of crop residues on the greenhouse gas balance of agroecosystems. Here, we combine a literature review and a meta-analysis to identify and assess measures for mitigating N2O emissions due to crop residue application to agricultural fields. Our study shows that crop residue removal, shallow incorporation, incorporation of residues with C:N ratio > 30 and avoiding incorporation of residues from crops terminated at an immature physiological stage, are measures leading to significantly lower N2O emissions. Other practices such as incorporation timing and interactions with fertilisers are less conclusive. Several of the evaluated N2O mitigation measures implied negative side-effects on yield, soil organic carbon storage, nitrate leaching and/or ammonia volatilization. We identified additional strategies with potential to reduce crop residue N2O emissions without strong negative side-effects, which require further research. These are: a) treatment of crop residues before field application, e.g., conversion of residues into biochar or anaerobic digestate, b) co-application with nitrification inhibitors or N-immobilizing materials such as compost with a high C:N ratio, paper waste or sawdust, and c) use of residues obtained from crop mixtures. Our study provides a scientific basis to be developed over the coming years on how to increase the sustainability of agroecosystems though adequate crop residue management.


Assuntos
Gases de Efeito Estufa , Óxido Nitroso , Agricultura , Carbono , Fertilizantes/análise , Gases de Efeito Estufa/análise , Óxido Nitroso/análise , Solo/química
5.
Sci Total Environ ; 812: 152532, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34952057

RESUMO

Crop residue incorporation is a common practice to increase or restore organic matter stocks in agricultural soils. However, this practice often increases emissions of the powerful greenhouse gas nitrous oxide (N2O). Previous meta-analyses have linked various biochemical properties of crop residues to N2O emissions, but the relationships between these properties have been overlooked, hampering our ability to predict N2O emissions from specific residues. Here we combine comprehensive databases for N2O emissions from crop residues and crop residue biochemical characteristics with a random-meta-forest approach, to develop a predictive framework of crop residue effects on N2O emissions. On average, crop residue incorporation increased soil N2O emissions by 43% compared to residue removal, however crop residues led to both increases and reductions in N2O emissions. Crop residue effects on N2O emissions were best predicted by easily degradable fractions (i.e. water soluble carbon, soluble Van Soest fraction (NDS)), structural fractions and N returned with crop residues. The relationship between these biochemical properties and N2O emissions differed widely in terms of form and direction. However, due to the strong correlations among these properties, we were able to develop a simplified classification for crop residues based on the stage of physiological maturity of the plant at which the residue was generated. This maturity criteria provided the most robust and yet simple approach to categorize crop residues according to their potential to regulate N2O emissions. Immature residues (high water soluble carbon, soluble NDS and total N concentration, low relative cellulose, hemicellulose, lignin fractions, and low C:N ratio) strongly stimulated N2O emissions, whereas mature residues with opposite characteristics had marginal effects on N2O. The most important crop types belonging to the immature residue group - cover crops, grasslands and vegetables - are important for the delivery of multiple ecosystem services. Thus, these residues should be managed properly to avoid their potentially high N2O emissions.


Assuntos
Ecossistema , Óxido Nitroso , Agricultura , Produtos Agrícolas , Fertilizantes , Óxido Nitroso/análise , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA