Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34770344

RESUMO

(1) Background: Small Animal Fast Insert for MRI detector I (SAFIR-I) is a preclinical Positron Emission Tomography (PET) insert for the Bruker BioSpec 70/30 Ultra Shield Refrigerated (USR) preclinical 7T Magnetic Resonance Imaging (MRI) system. It is designed explicitly for high-rate kinetic studies in mice and rats with injected activities reaching 500MBq, enabling truly simultaneous quantitative PET and Magnetic Resonance (MR) imaging with time frames of a few seconds in length. (2) Methods: SAFIR-I has an axial field of view of 54.2mm and an inner diameter of 114mm. It employs Lutetium Yttrium OxyorthoSilicate (LYSO) crystals and Multi Pixel Photon Counter (MPPC) arrays. The Position-Energy-Timing Application Specific Integrated Circuit, version 6, Single Ended (PETA6SE) digitizes the MPPC signals and provides time stamps and energy information. (3) Results: SAFIR-I is MR-compatible. The system's Coincidence Resolving Time (CRT) and energy resolution are between separate-uncertainty 209.0(3)ps and separate-uncertainty 12.41(02) Full Width at Half Maximum (FWHM) at low activity and separate-uncertainty 326.89(12)ps and separate-uncertainty 20.630(011) FWHM at 550MBq, respectively. The peak sensitivity is ∼1.6. The excellent performance facilitated the successful execution of first in vivo rat studies beyond 300MBq. Based on features visible in the acquired images, we estimate the spatial resolution to be ∼2mm in the center of the Field Of View (FOV). (4) Conclusion: The SAFIR-I PET insert provides excellent performance, permitting simultaneous in vivo small animal PET/MR image acquisitions with time frames of a few seconds in length at activities of up to 500MBq.


Assuntos
Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Animais , Desenho de Equipamento , Cinética , Camundongos , Imagens de Fantasmas , Fótons , Ratos
2.
EJNMMI Phys ; 10(1): 81, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085381

RESUMO

BACKGROUND: Small Animal Fast Insert for MRI detector I (SAFIR-I) is a novel Positron Emission Tomography insert for a [Formula: see text] Bruker BioSpec 70/30 Ultra Shield Refrigerated Magnetic Resonance Imaging (MRI) system. It facilitates truly simultaneous quantitative imaging in mice and rats at injected activities as high as [Formula: see text]. Exploitation of the resulting high count rates enables quick image formation at few seconds per frame. In this investigation, key performance parameters of SAFIR-I have been determined according to the evaluations outlined in the National Electrical Manufacturers Association (NEMA) Standards Publication NU 4-2008 (NEMA-NU4) protocol. RESULTS: Using an energy window of 391 to [Formula: see text] and a Coincidence Timing Window of [Formula: see text], the following performance was observed: The average spatial resolution at [Formula: see text] radial offset (Full Width at Half Maximum) is [Formula: see text] when using Filtered Backprojection, 3D Reprojection reconstruction. For the mouse- and rat-like phantoms, the maximal Noise-Equivalent Count Rates (NECRs) are [Formula: see text] at the highest tested average effective concentration of [Formula: see text], and [Formula: see text] at the highest tested average effective concentration of [Formula: see text], respectively. The NECR peak is not yet reached for either of these cases. The peak sensitivity is [Formula: see text]. The Image Quality phantom uniformity standard deviation is [Formula: see text]. The Recovery Coefficient for the [Formula: see text] rod is [Formula: see text]. The Spill-Over Ratios are [Formula: see text] and [Formula: see text], for the water- and air-filled cylinder, respectively. An accuracy of [Formula: see text] was achieved for the quantitative calibration of reconstructed voxel values. CONCLUSIONS: The measured performance parameters indicate that the various design goals have been achieved. SAFIR-I offers excellent performance, especially at the high activities it was designed for. This facilitates planned experiments with fast tracer kinetics in small animals. Ways to potentially improve performance can still be explored. Simultaneously, further performance gains can be expected for a forthcoming insert featuring 2.7 times longer axial coverage named Small Animal Fast Insert for MRI detector II (SAFIR-II).

3.
EJNMMI Phys ; 9(1): 42, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35695989

RESUMO

BACKGROUND: The SAFIR prototype insert is a preclinical Positron Emission Tomography (PET) scanner built to acquire dynamic images simultaneously with a 7 T Bruker Magnetic Resonance Imaging (MRI) scanner. The insert is designed to perform with an excellent coincidence resolving time of 194 ps Full Width Half Maximum (FWHM) and an energy resolution of 13.8% FWHM. These properties enable it to acquire precise quantitative images at activities as high as 500 MBq suitable for studying fast biological processes within short time frames (< 5 s). In this study, the performance of the SAFIR prototype insert is evaluated according to the NEMA NU 4-2008 standard while the insert is inside the MRI without acquiring MRI data. RESULTS: Applying an energy window of 391-601 keV and a coincidence time window of 500 ps the following results are achieved. The average spatial resolution at 5 mm radial offset is 2.6 mm FWHM when using the Filtered Backprojection 3D Reprojection (FBP3DRP) reconstruction method, improving to 1.2 mm when using the Maximum Likelihood Expectation Maximization (MLEM) method. The peak sensitivity at the center of the scanner is 1.06%. The Noise Equivalent count Rate (NECR) is 799 kcps at the highest measured activity of 537 MBq for the mouse phantom and 121 kcps at the highest measured activity of 624 MBq for the rat phantom. The NECR peak is not yet reached for any of the measurements. The scatter fractions are 10.9% and 17.8% for the mouse and rat phantoms, respectively. The uniform region of the image quality phantom has a 3.0% STD, with a 4.6% deviation from the expected number of counts per voxel. The spill-over ratios for the water and air chambers are 0.18 and 0.17, respectively. CONCLUSIONS: The results satisfy all the requirements initially considered for the insert, proving that the SAFIR prototype insert can obtain dynamic images of small rodents at high activities ([Formula: see text] 500 MBq) with a high sensitivity and an excellent count-rate performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA