Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 29(2): 83-95, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26554735

RESUMO

Plant pathogens have the capacity to manipulate the host immune system through the secretion of effectors. We identified 27 putative effector proteins encoded in the genome of the maize anthracnose pathogen Colletotrichum graminicola that are likely to target the host's nucleus, as they simultaneously contain sequence signatures for secretion and nuclear localization. We functionally characterized one protein, identified as CgEP1. This protein is synthesized during the early stages of disease development and is necessary for anthracnose development in maize leaves, stems, and roots. Genetic, molecular, and biochemical studies confirmed that this effector targets the host's nucleus and defines a novel class of double-stranded DNA-binding protein. We show that CgEP1 arose from a gene duplication in an ancestor of a lineage of monocot-infecting Colletotrichum spp. and has undergone an intense evolution process, with evidence for episodes of positive selection. We detected CgEP1 homologs in several species of a grass-infecting lineage of Colletotrichum spp., suggesting that its function may be conserved across a large number of anthracnose pathogens. Our results demonstrate that effectors targeted to the host nucleus may be key elements for disease development and aid in the understanding of the genetic basis of anthracnose development in maize plants.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Colletotrichum/fisiologia , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Zea mays/microbiologia , Adaptação Fisiológica , Evolução Biológica , DNA Fúngico/genética , DNA de Plantas/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/fisiologia , Variação Genética , Genoma de Planta , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Caules de Planta/microbiologia , Ligação Proteica
2.
Plant Physiol ; 158(3): 1342-58, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22247271

RESUMO

Hemibiotrophic plant pathogens first establish a biotrophic interaction with the host plant and later switch to a destructive necrotrophic lifestyle. Studies of biotrophic pathogens have shown that they actively suppress plant defenses after an initial microbe-associated molecular pattern-triggered activation. In contrast, studies of the hemibiotrophs suggest that they do not suppress plant defenses during the biotrophic phase, indicating that while there are similarities between the biotrophic phase of hemibiotrophs and biotrophic pathogens, the two lifestyles are not analogous. We performed transcriptomic, histological, and biochemical studies of the early events during the infection of maize (Zea mays) with Colletotrichum graminicola, a model pathosystem for the study of hemibiotrophy. Time-course experiments revealed that mRNAs of several defense-related genes, reactive oxygen species, and antimicrobial compounds all begin to accumulate early in the infection process and continue to accumulate during the biotrophic stage. We also discovered the production of maize-derived vesicular bodies containing hydrogen peroxide targeting the fungal hyphae. We describe the fungal respiratory burst during host infection, paralleled by superoxide ion production in specific fungal cells during the transition from biotrophy to a necrotrophic lifestyle. We also identified several novel putative fungal effectors and studied their expression during anthracnose development in maize. Our results demonstrate a strong induction of defense mechanisms occurring in maize cells during C. graminicola infection, even during the biotrophic development of the pathogen. We hypothesize that the switch to necrotrophic growth enables the fungus to evade the effects of the plant immune system and allows for full fungal pathogenicity.


Assuntos
Colletotrichum/patogenicidade , Interações Hospedeiro-Patógeno , Doenças das Plantas/imunologia , Zea mays/imunologia , Zea mays/microbiologia , Ácido Abscísico/farmacologia , Antifúngicos/metabolismo , Parede Celular/metabolismo , Ácidos Cumáricos/metabolismo , Perfilação da Expressão Gênica , Genes Fúngicos , Genes de Plantas , Peróxido de Hidrogênio/metabolismo , Hifas/imunologia , Hifas/metabolismo , Fenóis/isolamento & purificação , Fenóis/metabolismo , Células Vegetais/imunologia , Células Vegetais/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Propionatos , Espécies Reativas de Oxigênio/metabolismo
3.
PLoS One ; 10(4): e0122281, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25874563

RESUMO

The increasing interest in the preservation of the environment and the health of consumers is changing production methods and food consumption habits. Functional foods are increasingly demanded by consumers because they contain bioactive compounds involved in health protection. In this sense biofertilization using plant probiotics is a reliable alternative to the use of chemical fertilizers, but there are few studies about the effects of plant probiotics on the yield of functional fruits and, especially, on the content of bioactive compounds. In the present work we reported that a strain of genus Phyllobacterium able to produce biofilms and to colonize strawberry roots is able to increase the yield and quality of strawberry plants. In addition, the fruits from plants inoculated with this strain have significantly higher content in vitamin C, one of the most interesting bioactive compounds in strawberries. Therefore the use of selected plant probiotics benefits the environment and human health without agronomical losses, allowing the production of highly functional foods.


Assuntos
Bactérias/metabolismo , Frutas/microbiologia , Plantas/microbiologia , Probióticos/metabolismo , Ácido Ascórbico/metabolismo , Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Fragaria/química , Fragaria/crescimento & desenvolvimento , Fragaria/microbiologia , Frutas/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interações Hospedeiro-Patógeno , Microscopia de Fluorescência , Phyllobacteriaceae/genética , Phyllobacteriaceae/metabolismo , Phyllobacteriaceae/fisiologia , Raízes de Plantas/microbiologia , Plantas/química
4.
PLoS One ; 7(11): e49520, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23185349

RESUMO

The threatened caesalpinioid legume Dimorphandra wilsonii, which is native to the Cerrado biome in Brazil, was examined for its nodulation and N(2)-fixing ability, and was compared with another, less-threatened species, D. jorgei. Nodulation and potential N(2) fixation was shown on seedlings that had been inoculated singly with five bradyrhizobial isolates from mature D. wilsonii nodules. The infection of D. wilsonii by two of these strains (Dw10.1, Dw12.5) was followed in detail using light and transmission electron microscopy, and was compared with that of D. jorgei by Bradyrhizobium strain SEMIA6099. The roots of D. wilsonii were infected via small transient root hairs at 42 d after inoculation (dai), and nodules were sufficiently mature at 63 dai to express nitrogenase protein. Similar infection and nodule developmental processes were observed in D. jorgei. The bacteroids in mature Dimorphandra nodules were enclosed in plant cell wall material containing a homogalacturonan (pectic) epitope that was recognized by the monoclonal antibody JIM5. Analysis of sequences of their rrs (16S rRNA) genes and their ITS regions showed that the five D. wilsonii strains, although related to SEMIA6099, may constitute five undescribed species of genus Bradyrhizobium, whilst their nodD and nifH gene sequences showed that they formed clearly separated branches from other rhizobial strains. This is the first study to describe in full the N(2)-fixing symbiotic interaction between defined rhizobial strains and legumes in the sub-family Caesalpinioideae. This information will hopefully assist in the conservation of the threatened species D. wilsonii.


Assuntos
Fabaceae/metabolismo , RNA Ribossômico 16S/metabolismo , Proteínas de Bactérias/metabolismo , Biomassa , Bradyrhizobium/metabolismo , Brasil , DNA Intergênico , Epitopos/química , Funções Verossimilhança , Microscopia Eletrônica de Transmissão/métodos , Nitrogênio/química , Oxirredutases/metabolismo , Pectinas/química , Filogenia , Raízes de Plantas/metabolismo , Solo , Microbiologia do Solo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA