Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phytopathology ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007764

RESUMO

Cercospora leaf spot (CLS), caused by the fungus Cercospora beticola, is the most destructive foliar disease of sugar beet worldwide. Resistance to the sterol demethylation inhibitor (DMI) fungicide tetraconazole has been previously correlated to synonymous and non-synonymous mutations in CbCyp51. Here, we extend these analyses to the DMI fungicides prothioconazole, difenoconazole, and mefentrifluconazole in addition to tetraconazole to confirm whether the synonymous and nonsynonymous mutations at amino acid positions 144 and 170 are associated with resistance to these fungicides. Nearly half of the 593 isolates of C. beticola collected in the Red River Valley of North Dakota and Minnesota in 2021 were resistant to all four DMIs. Another 20% were resistant to tetraconazole and prothioconazole, but sensitive to difenoconazole and mefentrifluconazole. A total of 13% of isolates were sensitive to all DMIs tested. We found five CbCyp51 haplotypes and associated them with phenotypes to the four DMIs. The most predominant haplotype (E170_A/ L144F_C) correlated to resistance to all four DMIs with up to 97.6% accuracy. The second most common haplotype (E170_A/L144) consisted of isolates associated with resistance phenotypes to tetraconazole and prothioconazole while also exhibiting sensitive phenotypes to difenoconazole and mefentrifluconazole with up to 98.4% accuracy. Quantitative PCR did not identify differences in CbCyp51 expression between haplotypes. This study gives an understanding for the importance of codon usage in fungicide resistance and provides crop management acuity for fungicide application decision-making.

2.
Phytopathology ; 112(5): 1016-1028, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34844416

RESUMO

Cercospora leaf spot (CLS) is a globally important disease of sugar beet (Beta vulgaris) caused by the fungus Cercospora beticola. Long-distance movement of C. beticola has been indirectly evidenced in recent population genetic studies, suggesting potential dispersal via seed. Commercial sugar beet "seed" consists of the reproductive fruit (true seed surrounded by maternal pericarp tissue) coated in artificial pellet material. In this study, we confirmed the presence of viable C. beticola in sugar beet fruit for 10 of 37 tested seed lots. All isolates harbored the G143A mutation associated with quinone outside inhibitor resistance, and 32 of 38 isolates had reduced demethylation inhibitor sensitivity (EC50 > 1 µg/ml). Planting of commercial sugar beet seed demonstrated the ability of seedborne inoculum to initiate CLS in sugar beet. C. beticola DNA was detected in DNA isolated from xylem sap, suggesting the vascular system is used to systemically colonize the host. We established nuclear ribosomal internal transcribed spacer region amplicon sequencing using the MinION platform to detect fungi in sugar beet fruit. Fungal sequences from 19 different genera were identified from 11 different sugar beet seed lots, but Fusarium, Alternaria, and Cercospora were consistently the three most dominant taxa, comprising an average of 93% relative read abundance over 11 seed lots. We also present evidence that C. beticola resides in the pericarp of sugar beet fruit rather than the true seed. The presence of seedborne inoculum should be considered when implementing integrated disease management strategies for CLS of sugar beet in the future.


Assuntos
Beta vulgaris , Cercospora , Beta vulgaris/microbiologia , Frutas , Doenças das Plantas/microbiologia , Açúcares , Verduras
3.
Fungal Genet Biol ; 92: 1-13, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27112724

RESUMO

Cercospora beticola causes Cercospora leaf spot of sugar beet. Cercospora leaf spot management measures often include application of the sterol demethylation inhibitor (DMI) class of fungicides. The reliance on DMIs and the consequent selection pressures imposed by their widespread use has led to the emergence of resistance in C. beticola populations. Insight into the molecular basis of tetraconazole resistance may lead to molecular tools to identify DMI-resistant strains for fungicide resistance management programs. Previous work has shown that expression of the gene encoding the DMI target enzyme (CYP51) is generally higher and inducible in DMI-resistant C. beticola field strains. In this study, we extended the molecular basis of DMI resistance in this pathosystem by profiling the transcriptional response of two C. beticola strains contrasting for resistance to tetraconazole. A majority of the genes in the ergosterol biosynthesis pathway were induced to similar levels in both strains with the exception of CbCyp51, which was induced several-fold higher in the DMI-resistant strain. In contrast, a secondary metabolite gene cluster was induced in the resistance strain, but repressed in the sensitive strain. Genes encoding proteins with various cell membrane fortification processes were induced in the resistance strain. Site-directed and ectopic mutants of candidate DMI-resistance genes all resulted in significantly higher EC50 values than the wild-type strain, suggesting that the cell wall and/or membrane modified as a result of the transformation process increased resistance to tetraconazole. Taken together, this study identifies important cell membrane components and provides insight into the molecular events underlying DMI resistance in C. beticola.


Assuntos
Ascomicetos/genética , Farmacorresistência Fúngica/genética , Ergosterol/genética , Esterol 14-Desmetilase/genética , Inibidores de 14-alfa Desmetilase/farmacologia , Ascomicetos/efeitos dos fármacos , Sequência de Bases , Clorobenzenos/farmacologia , Ergosterol/biossíntese , Fungicidas Industriais/farmacologia , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Esterol 14-Desmetilase/biossíntese , Triazóis/farmacologia
4.
Phytopathology ; 102(3): 298-305, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22085297

RESUMO

The hemibiotrophic fungus Cercospora beticola causes leaf spot of sugar beet. Leaf spot control measures include the application of sterol demethylation inhibitor (DMI) fungicides. However, reduced sensitivity to DMIs has been reported recently in the Red River Valley sugar beet-growing region of North Dakota and Minnesota. Here, we report the cloning and molecular characterization of CbCyp51, which encodes the DMI target enzyme sterol P450 14α-demethylase in C. beticola. CbCyp51 is a 1,632-bp intron-free gene with obvious homology to other fungal Cyp51 genes and is present as a single copy in the C. beticola genome. Five nucleotide haplotypes were identified which encoded three amino acid sequences. Protein variant 1 composed 79% of the sequenced isolates, followed by protein variant 2 that composed 18% of the sequences and a single isolate representative of protein variant 3. Because resistance to DMIs can be related to polymorphism in promoter or coding sequences, sequence diversity was assessed by sequencing >2,440 nucleotides encompassing CbCyp51 coding and flanking regions from isolates with varying EC(50) values (effective concentration to reduce growth by 50%) to DMI fungicides. However, no mutations or haplotypes were associated with DMI resistance or sensitivity. No evidence for alternative splicing or differential methylation of CbCyp51 was found that might explain reduced sensitivity to DMIs. However, CbCyp51 was overexpressed in isolates with high EC(50) values compared with isolates with low EC(50) values. After exposure to tetraconazole, isolates with high EC(50) values responded with further induction of CbCyp51, with a positive correlation of CbCyp51 expression and tetraconazole concentration up to 2.5 µg ml(-1).


Assuntos
Ascomicetos/enzimologia , Beta vulgaris/microbiologia , Farmacorresistência Fúngica/genética , Esterol 14-Desmetilase/genética , Ascomicetos/efeitos dos fármacos , Ascomicetos/genética , Sequência de Bases , Clorobenzenos/farmacologia , Clonagem Molecular , DNA Complementar/genética , DNA Fúngico/química , DNA Fúngico/genética , Dioxolanos/farmacologia , Dosagem de Genes/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Haplótipos , Dados de Sequência Molecular , Mutação , Folhas de Planta/microbiologia , Análise de Sequência de DNA , Esterol 14-Desmetilase/isolamento & purificação , Triazóis/farmacologia
5.
Plant Dis ; 96(12): 1749-1756, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30727253

RESUMO

Cercospora leaf spot (CLS) of sugar beet is caused by the fungus Cercospora beticola. CLS management practices include the application of the sterol demethylation inhibitor (DMI) fungicides tetraconazole, difenoconazole, and prothioconazole. Evaluating resistance to DMIs is a major focus for CLS fungicide resistance management. Isolates were collected in 1997 and 1998 (baseline sensitivity to tetraconazole, prothioconazole, or difenoconazole) and 2007 through 2010 from the major sugar-beet-growing regions of Minnesota and North Dakota and assessed for in vitro sensitivity to two or three DMI fungicides. Most (47%) isolates collected in 1997-98 exhibited 50% effective concentration (EC50) values for tetraconazole of <0.01 µg ml-1, whereas no isolates could be found in this EC50 range in 2010. Since 2007, annual median and mean tetraconazole EC50 values have generally been increasing, and the frequency of isolates with EC50 values >0.11 µg ml-1 increased from 2008 to 2010. In contrast, the frequency of isolates with EC50 values for prothioconazole of >1.0 µg ml-1 has been decreasing since 2007. Annual median difenoconazole EC50 values appears to be stable, although annual mean EC50 values generally have been increasing for this fungicide. Although EC50 values are important for gauging fungicide sensitivity trends, a rigorous comparison of the relationship between in vitro EC50 values and loss of fungicide efficacy in planta has not been conducted for C. beticola. To explore this, 12 isolates exhibiting a wide range of tetraconazole EC50 values were inoculated to sugar beet but no tetraconazole was applied. No relationship was found between isolate EC50 value and disease severity. To assess whether EC50 values are related to fungicide efficacy in planta, sugar beet plants were sprayed with various dilutions of Eminent, the commercial formulation of tetraconazole, and subsequently inoculated with isolates that exhibited very low, medium, or high tetraconazole EC50 values. The high EC50 isolate caused significantly more disease than isolates with medium or very low EC50 values at the field application rate and most reduced rates. Because in vitro sensitivity testing is typically carried out with the active ingredient of the commercial fungicide, we investigated whether loss of disease control was the same for tetraconazole as for the commercial product Eminent. The high EC50 isolate caused more disease on plants treated with tetraconazole than Eminent but disease severity was not different between plants inoculated with the very low EC50 isolate.

6.
Genome Biol Evol ; 13(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34499119

RESUMO

The rapid and widespread evolution of fungicide resistance remains a challenge for crop disease management. The demethylation inhibitor (DMI) class of fungicides is a widely used chemistry for managing disease, but there has been a gradual decline in efficacy in many crop pathosystems. Reliance on DMI fungicides has increased resistance in populations of the plant pathogenic fungus Cercospora beticola worldwide. To better understand the genetic and evolutionary basis for DMI resistance in C. beticola, a genome-wide association study (GWAS) and selective sweep analysis were conducted for the first time in this species. We performed whole-genome resequencing of 190 C. beticola isolates infecting sugar beet (Beta vulgaris ssp. vulgaris). All isolates were phenotyped for sensitivity to the DMI tetraconazole. Intragenic markers on chromosomes 1, 4, and 9 were significantly associated with DMI fungicide resistance, including a polyketide synthase gene and the gene encoding the DMI target CbCYP51. Haplotype analysis of CbCYP51 identified a synonymous mutation (E170) and nonsynonymous mutations (L144F, I387M, and Y464S) associated with DMI resistance. Genome-wide scans of selection showed that several of the GWAS mutations for fungicide resistance resided in regions that have recently undergone a selective sweep. Using radial plate growth on selected media as a fitness proxy, we did not find a trade-off associated with DMI fungicide resistance. Taken together, we show that population genomic data from a crop pathogen can allow the identification of mutations conferring fungicide resistance and inform about their origins in the pathogen population.


Assuntos
Ascomicetos , Fungicidas Industriais , Ascomicetos/genética , Cercospora , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Estudo de Associação Genômica Ampla
7.
Phytopathology ; 100(3): 290-6, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20128703

RESUMO

Fusarium graminearum, a known producer of trichothecene mycotoxins in cereal hosts, has been recently documented as a cause of dry rot of potato tubers in the United States. Due to the uncertainty of trichothecene production in these tubers, a study was conducted to determine the accumulation and diffusion of trichothecenes in potato tubers affected with dry rot caused by F. graminearum. Potato tubers of cv. Russet Burbank were inoculated with 14 F. graminearum isolates from potato, sugar beet, and wheat and incubated at 10 to 12 degrees C for 5 weeks to determine accumulation of trichothecenes in potato tubers during storage. Twelve of the isolates were classified as deoxynivalenol (DON) genotype and two isolates were as nivalenol (NIV) genotype. Trichothecenes were detected only in rotted tissue. DON was detected in all F. graminearum DON genotype isolates up to 39.68 microg/ml in rotted potato tissue. Similarly, both NIV genotype isolates accumulated NIV in rotted potato tissue up to 18.28 microg/ml. Interestingly, isolates classified as genotype DON accumulated both DON and NIV in the dry rot lesion. Potato tubers were then inoculated with two isolates of F. graminearum chemotype DON and incubated up to 7 weeks at 10 to 12 degrees C and assayed for DON diffusion. F. graminearum was recovered from >53% of the isolations from inoculated tubers at 3 cm distal to the rotted tissue after 7 weeks of incubation but DON was not detected in the surrounding tissue. Based in this data, the accumulation of trichothecenes in the asymptomatic tissue surrounding dry rot lesions caused by F. graminearum is minimal in cv. Russet Burbank potato tubers stored for 7 weeks at customary processing storage temperatures.


Assuntos
Fusarium/metabolismo , Micotoxinas/metabolismo , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Tricotecenos/metabolismo , Fusarium/genética , Genótipo , Micotoxinas/química , Tricotecenos/química
8.
Phytopathology ; 97(10): 1331-7, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18943692

RESUMO

ABSTRACT Isolates of Helminthosporium solani, the causal agent of silver scurf of potato, collected from multiple locations consistently show white sectoring and rings, differential coloration, and reduced sporulation in culture. It has been accepted that this growth pattern is normal for H. solani cultures. Scanning electron microscopy confirmed the presence of a contaminating fungus in close association with cultures of H. solani. Repeated hyphal tip isolation techniques were used to separate H. solani from the fungal contaminant. Resultant pure cultures of H. solani were uniformly black in color, without white sectors or rings. The contaminating fungus was identified as Acremonium strictum. The purpose of this study was to elucidate the relationship between A. strictum and H. solani, and evaluate the impact of the fungicolous A. strictum on the growth and biology of H. solani. In vitro studies demonstrated that A. strictum significantly reduced sporulation of H. solani isolates from 65 to 35%, spore germination from 53 to 43%, and mycelial growth from 40 to 32% compared with noncontaminated cultures of H. solani. These data indicate that A. strictum is antagonistic to H. solani, and can be considered a mycoparasite. A. strictum reduced H. solani conidia production on minitubers, thereby reducing inoculum for infection. However, treatment with A. strictum does not reduce silver scurf of previously infected tubers. Further studies are warranted to determine the full potential of A. strictum as a biological control agent of H. solanii-incited silver scurf of stored potato tubers and the most effective manner of use.

9.
Fungal Biol ; 118(9-10): 764-75, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25209635

RESUMO

This study characterized a novel sugar beet (Beta vulgaris L.) pathogen from the Red River Valley in north central USA, which was formally named Fusarium secorum. Molecular phylogenetic analyses of three loci (translation elongation factor1α, calmodulin, mitochondrial small subunit) and phenotypic data strongly supported the inclusion of F. secorum in the Fusarium fujikuroi species complex (FFSC). Phylogenetic analyses identified F. secorum as a sister taxon of F. acutatum and a member of the African subclade of the FFSC. Fusarium secorum produced circinate hyphae sometimes bearing microconidia and abundant corkscrew-shaped hyphae in culture. To assess mycotoxin production potential, 45 typical secondary metabolites were tested in F. secorum rice cultures, but only beauvericin was produced in detectable amounts by each isolate. Results of pathogenicity experiments revealed that F. secorum isolates are able to induce half- and full-leaf yellowing foliar symptoms and vascular necrosis in roots and petioles of sugar beet. Inoculation with F. acutatum did not result in any disease symptoms. The sugar beet disease caused by F. secorum is named Fusarium yellowing decline. Since Fusarium yellowing decline incidence has been increasing in the Red River Valley, disease management options are discussed.


Assuntos
Beta vulgaris/microbiologia , Fusarium/classificação , Fusarium/isolamento & purificação , Doenças das Plantas/microbiologia , Calmodulina/genética , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , Fusarium/citologia , Fusarium/fisiologia , Hifas/citologia , Hifas/crescimento & desenvolvimento , Dados de Sequência Molecular , Micotoxinas/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência , Estados Unidos
10.
Int J Syst Evol Microbiol ; 56(Pt 7): 1593-1597, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16825635

RESUMO

Potato purple top wilt (PPT) is a devastating disease that occurs in various regions of North America and Mexico. At least three distinct phytoplasma strains belonging to three different phytoplasma groups (16SrI, 16SrII and 16SrVI) have been associated with this disease. A new disease with symptoms similar to PPT was recently observed in Texas and Nebraska, USA. Two distinct phytoplasma strain clusters were identified. One belongs to the 16SrI phytoplasma group, subgroup A, and the other is a novel phytoplasma that is most closely related to, and shares 96.6 % 16S rRNA gene sequence similarity with, a member of group 16SrXII. Phylogenetic analysis of 16S rRNA gene sequences of the novel PPT-associated phytoplasma strains, previously described 'Candidatus Phytoplasma' organisms and other distinct unnamed phytoplasmas indicated that the novel phytoplasma, termed American potato purple top wilt (APPTW) phytoplasma, represents a distinct lineage and shares a common ancestor with stolbur phytoplasma, "Candidatus Phytoplasma australiense", "Candidatus Phytoplasma japonicum", "Candidatus Phytoplasma fragariae", bindweed yellows phytoplasma (IBS), "Candidatus Phytoplasma caricae" and "Candidatus Phytoplasma graminis". On the basis of unique 16S rRNA gene sequences and biological properties, it is proposed that the APPTW phytoplasma represents "Candidatus Phytoplasma americanum", with APPTW12-NE as the reference strain.


Assuntos
Phytoplasma/classificação , Phytoplasma/isolamento & purificação , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Impressões Digitais de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , México , Dados de Sequência Molecular , América do Norte , Filogenia , Phytoplasma/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA