Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 88(11): 6868-6877, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37216317

RESUMO

Ureas are often thought of as "double amides" due to the obvious structural similarity of these functional groups. The main structural feature of an amide is its planarity, which is responsible for the conjugation between the nitrogen atom and carbonyl moiety and the decrease of amide nucleophilicity. Consequently, since amides are poor nucleophiles, ureas are often thought of as poor nucleophiles as well. Herein, we demonstrate that ureas can be distinctly different from amides. These differences can be amplified by rotation around one of the ureas' C-N bonds, which switches off the amide resonance and recovers the nucleophilicity of one of the nitrogen atoms. This conformational change can be further facilitated by the judicious introduction of steric bulk to disfavor the planar conformation. This change in reactivity is an example of "stereoelectronic deprotection," a concept when the desired reactivity of a functional group is produced by a conformational change rather than a chemical modification. This concept may be used complementarily to the traditional protecting groups. We also demonstrate both the viability and the utility of this concept by the synthesis of unusual 2-oxoimidazolium salts possessing quaternary nitrogen atoms at the urea moiety.

2.
J Org Chem ; 88(16): 11855-11866, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37550293

RESUMO

Herein, we report a highly regioselective one-pot synthesis of pyrazolo[3,4-b]pyridines via the reaction of 3-arylidene-1-pyrrolines with aminopyrazoles. The reaction proceeds through the sequential nucleophilic addition/electrophilic substitution/C-N bond cleavage and provides easy access to pyrazolo[3,4-b]pyridine derivatives featuring a primary amino group. Moreover, the reaction can be terminated at the electrophilic substitution stage, thus providing convenient entry to the hardly accessible pyrazolopyrrolopyridine scaffold.

3.
Org Biomol Chem ; 20(35): 7105-7111, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36043377

RESUMO

The cooperative L-proline/Brønsted acid/base promoted reaction of 2-ethoxypyrrolidines or N-substituted 4,4-diethoxybutan-1-amines with methyl(alkyl/aryl)ketones for the synthesis of 2-(acylmethylene)pyrrolidine derivatives is reported. The key features of the developed protocol are gram-scale synthesis of the target compounds, easily available starting materials, operational simplicity and usage of non-expensive reagents.


Assuntos
Acetais , Alcaloides , Cetonas , Estrutura Molecular , Pirrolidinas , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA