Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bio Protoc ; 13(13): e4706, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37449039

RESUMO

In the environment, bacteria compete for niche occupancy and resources; they have, therefore, evolved a broad variety of antibacterial weapons to destroy competitors. Current laboratory techniques to evaluate antibacterial activity are usually labor intensive, low throughput, costly, and time consuming. Typical assays rely on the outgrowth of colonies of prey cells on selective solid media after competition. Here, we present fast, inexpensive, and complementary optimized protocols to qualitatively and quantitively measure antibacterial activity. The first method is based on the degradation of a cell-impermeable chromogenic substrate of the ß-galactosidase, a cytoplasmic enzyme released during lysis of the attacked reporter strain. The second method relies on the lag time required for the attacked cells to reach a defined optical density after the competition, which is directly dependent on the initial number of surviving cells. Key features First method utilizes the release of ß-galactosidase as a proxy for bacterial lysis. Second method is based on the growth timing of surviving cells. Combination of two methods discriminates between cell death and lysis, cell death without lysis, or survival to quasi-lysis. Methods optimized to various bacterial species such as Escherichia coli, Pseudomonas aeruginosa, and Myxococcus xanthus. Graphical overview.

2.
Elife ; 102021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34505573

RESUMO

Myxococcus xanthus, a soil bacterium, predates collectively using motility to invade prey colonies. Prey lysis is mostly thought to rely on secreted factors, cocktails of antibiotics and enzymes, and direct contact with Myxococcus cells. In this study, we show that on surfaces the coupling of A-motility and contact-dependent killing is the central predatory mechanism driving effective prey colony invasion and consumption. At the molecular level, contact-dependent killing involves a newly discovered type IV filament-like machinery (Kil) that both promotes motility arrest and prey cell plasmolysis. In this process, Kil proteins assemble at the predator-prey contact site, suggesting that they allow tight contact with prey cells for their intoxication. Kil-like systems form a new class of Tad-like machineries in predatory bacteria, suggesting a conserved function in predator-prey interactions. This study further reveals a novel cell-cell interaction function for bacterial pili-like assemblages.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/crescimento & desenvolvimento , Fímbrias Bacterianas/metabolismo , Myxococcus xanthus/metabolismo , Microbiologia do Solo , Proteínas de Bactérias/genética , Fímbrias Bacterianas/genética , Viabilidade Microbiana , Movimento , Myxococcus xanthus/genética , Myxococcus xanthus/patogenicidade , Análise de Célula Única , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA